« RETURN TO DIRECTORY

John P Ward

Assistant Professor

North Carolina Agricultural and Technical State University
College
College of Science and Technology

Department
Mathematics

Contact
Hines Hall 323
Education
B.S.Mathematics / University of Georgia
Ph.D.Mathematics / Texas A&M University

Research Interests

Applied harmonic analysis, Signal and image processing, Wavelets, Basis functions, Measure theory, Stochastic processes, Signal processing on graphs

Recent Publications

  • Francis Narcowich, John Ward (2020). (Interpolating splines on graphs for data science applications). ). Applied and Computational Harmonic Analysis.
  • Julien Fageot, Michael Unser, John Ward (2019). (The n-term approximation of periodic generalized Levy processes). ). Journal of Theoretical Probability.
  • Arash Amini, Julien Fageot, Zsuzsanna Puspoki, Michael Unser, John Ward (2019). (Angular Accuracy of Steerable Feature Detectors). (1) 12, pp. 344-371 ). SIAM Journal on Imaging Sciences .
  • Julien Fageot, Michael Unser, John Ward (2019). (Beyond Wiener's lemma: nuclear convolution algebras and the inversion of digital filters). ). Journal of Fourier Analysis and Applications.
  • Julien Fageot, Michael Unser, John Ward (2017). (Splines are Universal Solutions of Linear Inverse Problems with Generalized-TV regularization). (4) 59, pp. 769--793 ). SIAM Review.
  • Adrien Depeursinge, Zsuzsanna Puspoki, Michael Unser, John Ward (2017). (Steerable Wavelet Machines (SWM): Learning Moving Frames for Texture). (4) 26, pp. 1626-1636 ). IEEE Transactions on Image Processing.
  • Ha Nguyen, Michael Unser, John Ward (2017). (Generalized Poisson Summation Formulas for Continuous Functions of Polynomial Growth). (2) 23, pp. 442-461 ). Journal of Fourier Analysis and Applications.
  • Julien Fageot, Michael Unser, John Ward (2017). (On the Besov regularity of periodic L\'evy noises). (1) 42, pp. 21-36 ). Appl. Comput. Harmon. A..
  • Zsuzsanna P\"usp\"oki, Daniel Sage, Michael Unser, John Ward (2016). (On the continuous steering of the scale of tight wavelet frames). (3) 9, pp. 1042-1062 ). SIAM J. Imaging Sci..
  • Zsuzsanna P\"usp\"oki, Daniel Sage, Michael Unser, John Ward (2016). (SpotCaliper: fast wavelet-based spot detection with accurate size estimation). (8) 32, pp. 1278-1280 ). Bioinformatics.
  • Emrah Bostan, Michael Unser, John Ward (2015). (Divergence-Free Wavelet Frames). (8) 22, pp. 1142-1146 ). IEEE Signal Proc. Let..
  • Minji Lee, Michael Unser, John Ward, Jong Ye (2015). (Interior Tomography Using 1D Generalized Total Variation. Part I: Mathematical Foundation). (1) 8, pp. 226-247 ). SIAM J. Imaging Sci..
  • Yoseob Han, Minji Lee, Michael Unser, John Ward, Jong Ye (2015). (Interior tomography using 1D generalized total variation. Part II: Multiscale implementation). (4) 8, pp. 2452-2486 ). SIAM J. Imaging Sci..
  • Pad Pedram, Michael Unser, John Ward (2015). (Optimal Isotropic Wavelets for Localized Tight Frame Representations). (11) 22, pp. 1918-1921 ). IEEE Signal Proc. Let..
  • Masih Nilchian, Michael Unser, Cedric Vonesch, John Ward (2015). (Optimized Kaiser-Bessel window functions for computed tomography). (11) 24, pp. 3826-3833 ). IEEE Trans. Image Process..
  • Aurelian Bourquard, Hagai Kirshner, Moshe Porat, Michael Unser, John Ward (2014). (Adaptive Image Resizing Based on Continuous-Domain Stochastic Modeling). (1) 23, pp. 413-423 ). IEEE Trans. on Image Process..
  • Michael Unser, John Ward (2014). (Approximation properties of Sobolev splines and the construction of compactly supported equivalents). (3) 46, pp. 1843-1858 ). SIAM J. Math. Anal..
  • Michael Unser, John Ward (2014). (Harmonic Singular Integrals and Steerable Wavelets in $L_2(Rd)$). (2) 36, pp. 183–197 ). Appl. Comput. Harmon. A..
  • Hagai Kirshner, Michael Unser, John Ward (2014). (On the Unique Identification of Continuous-time Autoregressive Models from Sampled Data). (6) 62, pp. 1361-1376 ). IEEE Trans. Signal Process..
  • John Ward (2013). ($L^{p}$ error estimates for approximation by Sobolev splines and Wendland functions on $\mathbb{R}^{d}$). (4) 38, pp. 873–889 ). Adv. Comput. Math..