Computational Science and Engineering, PhD

College of Engineering

Graduate Coordinator: TBA Email: bikdash@ncat.edu Phone: 336-334-7437
Department Chair: Marwan Bikdash Email: bikdash@ncat.edu Phone: 336-334-7437

The PhD in Computational Science and Engineering (CSE) is an interdisciplinary graduate program designed for students who seek to use advanced computational methods to solve large problems in diverse fields ranging from the basic sciences (physics, chemistry, mathematics, etc.) to sociology, biology, engineering, and economics. The mission of Computational Science and Engineering is to graduate professionals who (a) have expertise in developing novel computational methodologies and products, and/or (b) have extended their expertise in specific disciplines (in science, technology, engineering, and socioeconomics) with computational tools. The Ph.D. program is designed for students with graduate and undergraduate degrees in a variety of fields including engineering, chemistry, physics, mathematics, computer science, and economics who will be trained to develop problem-solving methodologies and computational tools for solving challenging problems. Research in Computational Science and Engineering includes: computational system theory, big data and computational statistics, high-performance computing and scientific visualization, multi-scale and multi-physics modeling, computational solid, fluid and nonlinear dynamics, computational geometry, fast and scalable algorithms, computational civil engineering, bioinformatics and computational biology, and computational physics.

Additional Admission Requirements
• Master of Science or Engineering degree in Computational Science and Engineering (CSE) or in science, engineering, business, economics, technology or in a field allied to computational science or computational engineering field.
• GRE scores

Program Outcomes:
• Students will demonstrate critical thinking and ability in conducting research in engineering, science and mathematics through computational modeling and simulations.
• Students will demonstrate mastery in communicating research results through publications that indicate effective content, organization and adherence to journal publication conventions.
• Students will explain the underlying principles behind scientific visualization of large data sets.
• Students will perform independent research in order to generate a dissertation of an original idea and to publish technical papers.

Degree Requirements
Total credit hours: 62 (post baccalaureate)
• Core courses (12 credits): CSE 702, 703, 801, 804
• Electives (27 credits): Take 27 credits from engineering, computer science, mathematics, physics, chemistry, biology, economics, business, agricultural science or other courses approved by the CSE department, with approval of advisor
• Select 6 additional credits to complete 62 credit requirement with approval of advisor. This can be dissertation hours, continuation/residency credits, supervised teaching, supervised research, or approved graduate courses with approval of advisor
• At least 26 credit hours should be at 800-900 level
• Seminar (CSE 992: 2 credits)
• Dissertation (CSE 997: 15 credits)
• Pass qualifying exam, preliminary exam, dissertation defense
Dissertation Research:
A student may not register for dissertation credits before passing Qualifying Examination. No more than 15 dissertation credits are counted toward the total credit hours requirement for the degree.

Qualifying Examination:
The Qualifying Examination is given to assess the student’s competence in a broad range of relevant subject areas. Only students with unconditional status and in good academic standing may take the Qualifying Examination. A student who wants to retake the Qualifying Examination must apply to retake the Qualifying Examination by the posted deadline. No student is permitted to take the Qualifying Examination more than twice. A student not recommended for re-examination or who fails the exam on a second attempt may be dismissed from the doctoral program.

Preliminary Oral Examination:
The Preliminary Oral Examination is conducted by the student's dissertation committee and is a defense of the student’s dissertation proposal. Passing this exam satisfies requirements for Ph.D. Candidacy. Failure on the examination may result in dismissal from the doctoral program. The student's Advisory Committee may permit one re-examination. At least one full semester must elapse before the re-examination. Failure on the second attempt will result in dismissal from the doctoral program.

Admission to Candidacy
Student will be admitted to candidacy upon successful completion of the Qualifying Exam and the Preliminary oral Exam.

Final Oral Examination:
The Final Oral Examination is conducted by the student's dissertation committee. This examination is the final dissertation defense presentation that is scheduled after a dissertation is completed. The examination may be held no earlier than one semester (or four months) after admission to candidacy. Failure on the examination may result in dismissal from the doctoral program. The student's Advisory Committee may permit one re-examination. At least one full semester must elapse before the re-examination. Failure on the second attempt will result in dismissal from the doctoral program.

Submission of Dissertation:
Upon passing the Ph.D. Final Oral Examination, the Ph.D. student must have the dissertation approved by each member of the student's dissertation committee. The approved dissertation must be submitted to The Graduate College by the deadline given in the academic calendar, and must conform to the Graduate College’s guidelines for theses and dissertations.