NORTH CAROLINA AGRICULTURAL AND TECHNICAL STATE UNIVERSITY

Program Assessment and Improvement Report Department of Applied Engineering Technology

Bachelor of Science in Applied Engineering Technology

Five full-time faculty (three are tenured or tenure-track) and five part-time instructors deliver the program. Located in the College of Science and Technology, it follows university's guidelines for assessing educational programs. Our BS in AET program is accredited by the Engineering Technology Accreditation Commission of ABET (<u>http://www.abet.org</u>) and ATMAE (Association of Technology, Management, and Applied Engineering).

1. Expected Outcomes for the Educational Program and Its Student Learning Outcomes

a. Program Outcomes

- (1) The BS program in Applied Engineering Technology will offer a curriculum that promotes mastery of engineering technology competencies and prepare students for success in transforming society through innovation and technology leadership.
- (2) The BS program in Applied Engineering Technology will enhance the intellectual productivity of faculty to support instruction and create innovative and responsible solutions to global challenges.

b. Student Learning Outcomes

- (1) <u>Communication Skills.</u> Students will exhibit effective communication skills (written, oral, and interpersonal) appropriate for professionals in this field of study.
- (2) <u>Critical Thinking Skills.</u> Students will effectively use quantitative and qualitative analytical problem-solving skills appropriate for professionals in this field of study.
- (3) <u>Disciplinary Expertise</u>. Students will demonstrate a level of discipline-specific expertise (knowledge, skills, and professionalism) appropriate for professionals in this field of study.
- (4) <u>Research/Creative Engagement.</u> Students will demonstrate ability to engage productively in the review and conduct of disciplinary research appropriate for professionals in this field of study.

2. Analysis of Expected Program Outcomes Assessment

a. Program Outcomes

The two program outcomes for the BS in Applied Engineering Technology are summarized in **Table 1**, showing the relationship between the outcomes, the assessment, the results, and the improvements made. A more detailed narrative follows the table.

Name of Program	Program Outcome	Method of Assessment	Results of Assessment	Use of Assessment Results for Improvement
BS in	The BS program in Applied Engineering Technology will offer a curriculum that promotes mastery of engineering technology competencies and prepare students for success in transforming society through innovation and technology leadership.	The primary measures of this outcome include enrollment, retention rate, graduation rate, and student placement.	Table 1.a shows the enrollment trend, retention and graduation rates, and student placement.	Major curriculum revision and course changes were made during 2019-2020. The revised curriculum and courses will be effective in Fall 2020.
Applied Engineering Technology	The BS program in Applied Engineering Technology will enhance the intellectual productivity of faculty to support instruction and create innovative and responsible solutions to global challenges.	This outcome is measured by the level of intellectual productivity of the faculty, including referred publications, submitted proposals, and funded projects.	Table 1.b lists the number of referred publications, submitted proposals (number and funding amount), and funded projects (number and funding amount).	The program will encourage mentoring new faculty to enhance the ability to obtain external funding.

Table 1: Program Outcomes, Assessments, and Improvements

(1) The BS program in Applied Engineering Technology will offer a curriculum that promotes mastery of engineering technology competencies and prepare students for success in transforming society through innovation and technology leadership.

Measures of this outcome are student success data including enrollment trend, number of degrees awarded, first year retention rate, 5 Years graduation rate, and student placement data is from graduating senior survey. Please refer to **Table 1.a** for AET student success data since AY 2016-2017. Enrollment peaked at 151 in AY2017-2018. In AY2018-2019, the program awarded the greatest number of degrees. The Retention Rate and Graduation Rate have been increased gradually in the recent three academic years.

Academic Year	2016-2017	2017-2018	2018-2019	2019-2020
Enrollment	146	151	147	119
Degrees Awarded	37	31	46	27
Retention Rate (%)	66.7	51.9	82.4	117.6
Graduation Rate (%)	33.3	28.6	45.8	48.1
Placement (%)			53.8	

Table 1.a: Applied Engineering Technology Student Success Data

(Enrollment number is from the Fall semester in the academic year. Retention Rate is first year retention rate. Graduation Rate is 5 Years graduation rate. Student Placement data is from graduating senior survey.)

(2) The BS program in Applied Engineering Technology will enhance the intellectual productivity of faculty to support instruction and create innovative and responsible solutions to global challenges.

This outcome is measured by the level of intellectual productivity of the faculty. **Table 1.b** lists six intellectual productivity items from the AET faculty since AY 2017-2018, where other publications include book chapters, conference articles, technical reports etc. Intellectual productivity has increased almost in all categories in the recent three academic years.

Academic Year	2017-2018	2018-2019	2019-2020*	
Journal Publications	8	11	8	
Other Publications	4	5	7	
Submitted Proposals	2	3	9	
Requested Funding	\$ 329,564	\$ 430,000	\$ 2,433,126	
Funded Projects	0	1	2	
Funded Amount	\$ O	\$ 280,000	\$ 44,220	

Table 1.b: Applied Engineering Technology Faculty Intellectual Productivity

*: Data as of March 2020.

b. Student Learning Outcomes (SLOs)

The four student learning outcomes (SLOs) for the BS in Applied Engineering Technology program are summarized in **Table 2**, showing the relationship between the outcomes, the assessment and results, and the improvements made. More detailed narrative follows the table.

Name of	Student Learning Outcome	Method of Assessment	Results of Assessment	Use of Assessment Results
Program	Student Learning Outcome	Method of Assessment	Results of Assessment	for Improvement
riogram	Communication Skills.	This SLO is assessed	Results for the spring	Some students had no
	Students will exhibit	annually by directly	semester in recent	concept of utilizing the
	effective communication	measuring the final	academic years are shown	APA structure. This is an
	skills (written, oral, and	project report in a	in Table 3.	area in need of
	interpersonal) appropriate	capstone class project in	in fusic 5.	improvement, for
	for professionals in this	AET 500 Capstone Class.		example, including a brief
	field of study.	The target score of 80%		lecture on APA styling in
	field of study.	of class would score 80%		the syllabus and learning
		or better on the		topics. This may help
		assignment was set as		student improve in
		the threshold to		reference citing and
		measure whether the		listing. Students will be
		outcome is met. The		familiar with the APA
		outcome is that students		styling.
		will demonstrate		Styling.
		proficiency in		
		communicating technical		
		information to a diverse		
DG ·		audience.		
BS in	Critical Thinking Skills.	This SLO is assessed	Results for the spring	Students need more
Applied	Students will effectively use	annually by directly	semester in recent	industry-driven projects.
Engineering	quantitative and qualitative	measuring the	academic years are shown	Students may garner
Technology	analytical problem-solving	conceptual design report	in Table 3.	more knowledge while
	skills appropriate for	in AET 500 Capstone		working with real-world
	professionals in this field of	Class. The target score of		problems of industry. The
	study.	80% of class would score		program has been
		80% or better on the		working with several
		assignment was set as		industry partners to
		the threshold to		develop real-world
		measure whether the		industry problems and
		outcome is met. The		raise financial support for
		outcome is that students		projects.
		will be able to identify		
		engineering technology		
		problems and develop		
		technology-based		
		solutions.		
	Disciplinary Expertise.	This SLO is assessed	Results for the spring	The timeframe of one
	Students will demonstrate	annually by directly	semester in recent	semester for students to
	a level of discipline-specific	measuring the technical	academic years are shown	complete their projects
	expertise (knowledge,	portion of the project in	in Table 3.	presented a challenge to

skills, and professionalism)	AET 500 Capstone Class.		25% of the groups. The
appropriate for	The target score of 80%		capstone course will be
professionals in this field of	of class would score 80%		extended to two
study.	or better on the		semesters in our new
	assignment was set as		curriculum effective Fall
	the threshold to		2020.
	measure whether the		
	outcome is met. The		
	outcome is that students		
	will be able to apply		
	technical knowledge and		
	modern tools to solving		
	emerging engineering		
	technology problems.		
Research/Creative	This SLO is assessed	Results for the spring	The program should bring
Engagement. Students will	annually by directly	semester in recent	industry-driven projects
demonstrate ability to	measuring the project	academic years are shown	into the classroom for the
engage productively in the	prototype document in	in Table 3.	students to explore. It
review and conduct of	in AET 500 Capstone		was recommended that
disciplinary research	Class. The target score of		establishing memberships
appropriate for	80% of class would score		and participation in on-
professionals in this field of	80% or better on the		campus student chapters
study.	assignment was set as		of organizations such as
	the threshold to		American Society for
	measure whether the		Quality (ASQ) should be
	outcome is met. The		encouraged. An ASQ
	outcome is that students		student chapter at N.C.
	will be able to apply		A&T has been approved
	research methods in		and is expected to be fully
	engineering technology,		operational in Fall 2020.
	including research		
	design, data analysis,		
	and interpretation.		

Table 3 summarizes the consolidated results for Student Learning Outcome 1-4 in the spring semester recent academic years. The process is continuing, and data collection and analysis is performed annually.

				V
	SLO1	SLO2	SLO3	SLO4
Academic Year	Communication	Critical	Disciplinary	Research/Creative
	Skills	Thinking Skills	Expertise	Engagement
2017-2018	100%	90%	100%	90%
2018-2019	100%	100%	100%	100%
2019-2020*	N.A.	N.A.	N.A.	N.A.

*: Data for AY2019-2020 will be available at the end of Spring 2020 semester.

(1) Communication Skills. Students will exhibit effective communication skills (written, oral, and interpersonal) appropriate for professionals in this field of study.

This SLO is assessed annually by directly measuring the final project report in a capstone class project in AET 500 Capstone Class. The target score of 80% of class would score 80% or better on the assignment was set as the threshold to measure whether the outcome is met. The outcome is that students will demonstrate proficiency in communicating technical information to a diverse audience.

Table 3 shows that performance in Communication Skills exceeded the outcome expectation.

(2) Critical Thinking Skills. Students will effectively use quantitative and qualitative analytical problem-solving skills appropriate for professionals in this field of study.

This SLO is assessed annually by directly measuring the conceptual design report in AET 500 Capstone Class. The target score of 80% of class would score 80% or better on the assignment was set as the threshold to measure whether the outcome is met. The outcome is that students will be able to identify engineering technology problems and develop technology-based solutions.

Table 3 shows that performance in Critical Thinking Skills exceeded the outcomeexpectation in the past two academic years.

(3) Disciplinary Expertise. Students will demonstrate a level of discipline-specific expertise (knowledge, skills, and professionalism) appropriate for professionals in this field of study. This SLO is assessed annually by directly measuring the technical portion of the project in AET 500 Capstone Class. The target score of 80% of class would score 80% or better on the assignment was set as the threshold to measure whether the outcome is met. The outcome is that students will be able to apply technical knowledge and modern tools to solving emerging engineering technology problems.

Table 3 shows that performance in Disciplinary Expertise exceeded the outcomeexpectation in the past two academic years.

(4) Research/Creative Engagement. Students will demonstrate ability to engage productively in the review and conduct of disciplinary research appropriate for professionals in this field of study.

This SLO is assessed annually by directly measuring the project prototype document in in AET 500 Capstone Class. The target score of 80% of class would score 80% or better on the assignment was set as the threshold to measure whether the outcome is met. The outcome is that students will be able to apply research methods in engineering technology, including research design, data analysis, and interpretation. **Table 3** shows that performance in Research/Creative Engagement exceeded the outcome expectation in the past two academic years.

- 3. Evidence of Program and SLO Improvements Using the Results of the Assessment (Closing the Loop) a. Program Outcomes
- (1) The BS program in Applied Engineering Technology will offer a curriculum that promotes mastery of engineering technology competencies and prepare students for success in transforming society through innovation and technology leadership.

The program faculty meets on a regular basis to solicit input for improvement strategies and/or report recommended changes. Curriculum enhancement is a regular topic at our faculty meetings, where faculty recommendations requiring formal curriculum changes to the catalog are considered and approved by the department faculty. We also collected inputs from the Department Advisory Board as well as the senior exit interviews conducted by the College's Office of Student Success in Spring 2019.

Course	Issue	Change
MATH 131 and 132	Same as traditional engineering, stay true	Change to MATH 110 and 131
	to our mission of applied approach to	
	engineering education	
Gen Ed (HIST 106, PSYC	Gen Ed courses are too specific	Change to any approved AA/ SBS/
101, SPCH 250, PHIL 201)		HFA/GL electives
AET 110	Need to prepare students for a digital	Replace with CGT121
	world, avoid duplication in CoST	
AET 202	Need to prepare students for a digital	Replace with CGT124
	world, avoid duplication in CoST	
AET 276	Prereq: Sophomore Standing, too vague	Change prereq to CST 112
	Course title is not clear (Introduction to	Change course title to
	PLC's)	"Programmable Logic Controller"
AET 281	Avoid duplication in CoST	Replace with MATH224
AET 311 (elective)	Prereq: Senior Standing and AET 395	Change prereq to Math 224
AET 312	Lab course with two credits (differ from	Change to one credit, add AET 211
	AET 211), no prereq	as the prereq.
AET 392 (elective)	Title is too long (Statics for Tech Major),	Change to Applied Statics, update
	description needs update, no prereq	description, PHYS 225 as prereq
AET 395	Prereq: Junior Standing, too vague	Add Prereq MATH 224
	Name is too long	Change name to Quality Control
AET 421 (elective)	Prereq: Junior Standing, too vague	Add Prereq MATH224 or AET 281
AET 441	Prereq AET 496 is not offered, description	Change prereq to AET 293, update
	needs update	course description
AET 484	Prereq: senior Standing, too vague	Change prereq to AET 276
AET 492 (elective)	Title is too long (Mech. of Materials for	Change title to Applied Mechanics
	Tech. Major), description needs update	of Materials, update description
AET 493 (elective)	Title is too long (Fund. of Dynamics and	Change title to Applied Dynamics,
	Kinetics for Technology Major),	update description
	description needs update	
AET Electives (elective)	Electives are specific to AET courses and	Allow more open electives, spread
	concentrate in the senior year	them out in Junior and Senior years
AET 500 Capstone	One semester (3 credits) is too short for	Create AET 470 and 480 (Capstone
	some projects, course number 500 is not in	Project I and II, 2 credits each, in
	line with university policy	two semesters) to replace AET 500

Table 4. Changes in the AET Curriculum (Effective Fall 2020)

After the AY2018-2019 assessment cycle, the changes in the AET curriculum as shown in **Table 4** were approved by the faculty and will be effective in Fall 2020. For example, to increase enrollment, the MATH requirement has been revised. In addition to changes in specific courses in the AET curriculum shown in Table 4, some program-wide changes were initiated with input from students, alumni, and the Department Advisory Board. These changes are related to the general education courses in the curriculum. In the current AET curriculum, each general education course is limited to one specified course, such as HIST 106 for Student Learning Outcome in knowledge of African American culture and history. However, the university approved a list of courses for each general education Student Learning Outcome. Students should have more flexibility in choosing general education courses. This will help students with their scheduling and will improve retention rate and graduate rate.

Results of evaluation processes for student outcomes are regularly reviewed and systematically employed as drivers for program improvement. We are also continuously evaluating the efficacy of our assessment processes to determine when improvements in process or measures might also enhance and improve our ability to assess achievement of outcomes.

(2) The BS program in Applied Engineering Technology will enhance the intellectual productivity of faculty to support instruction and create innovative and responsible solutions to global challenges.

While the publication productivity of the faculty is excellent, the funded research part needs improvement. The program has decided to encourage mentoring new faculty to enhance the ability to obtain external funding.

b. Learning Outcome Improvements

(1) Communication Skills. Students will exhibit effective communication skills (written, oral, and interpersonal) appropriate for professionals in this field of study.

Although students exceeded expectations in Communication Skills overall, it was observed that some students had no concept of utilizing the APA structure. This is an area in need of improvement, for example, including a brief lecture on APA styling in the syllabus and learning topics. This may help student improve in reference citing and listing. Students will be familiar with the APA styling.

(2) Critical Thinking Skills. Students will effectively use quantitative and qualitative analytical problem-solving skills appropriate for professionals in this field of study.

The various projects undertaken by the students required critical thinking skills highlighting a focus on problem-solving and planning. We need more industry-driven projects, e.g., bringing in industry-driven projects into the classroom for the students to explore. This will expose students to current technical challenges in industry. A partnership with industry leaders might allow students to develop and employ new engineering technology graduates when working to solve problems or create new opportunities. Students may garner more knowledge while working with real-world problems of industry. The program has been working with several industry partners to develop real-world industry problems and raise financial support for projects.

(3) Disciplinary Expertise. Students will demonstrate a level of discipline-specific expertise (knowledge, skills, and professionalism) appropriate for professionals in this field of study.

Students showed great interest and enthusiasm in working on practical projects. It was observed that the timeframe (one semester) given students to complete their respective projects presented a challenge to 25% of the groups. The recommendation that the AET 500 course should be extended from one semester to two semesters has been implemented in our new AY2020 curriculum (two new 2-hour courses AET 470 and AET 480).

(4) Research/Creative Engagement. Students will demonstrate ability to engage productively in the review and conduct of disciplinary research appropriate for professionals in this field of study.

All assignments were done in a timely manner as requested. The program should bring industry-driven projects into the classroom for the students to explore. The rubric category related to productivity, work standards and costs would be affected most by a collaboration with industry. It was recommended that establishing memberships and participation in on-campus student chapters of organizations such as American Society for Quality (ASQ) should be encouraged. An ASQ student chapter at N.C. A&T has been approved and is expected to be fully operational in Fall 2020.

Submitted by, Dr. Aixi Zhou March 27, 2020