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EXECUTIVE SUMMARY 

This project presents a comprehensive examination of the integration of advanced machine 

learning and optimization techniques to enhance air traffic management during emergency 

scenarios. This multi-phase study, encompassing three distinct but interconnected phases, 

leverages cutting-edge artificial intelligence (AI) to predict flight delays, optimize evacuation 

processes, and plan evacuation flight paths efficiently, thereby contributing significantly to the 

resilience and responsiveness of air mobility systems in the face of natural disasters and other 

emergencies. 

The initial phase of the project focused on developing an explainable machine learning 

model, specifically a gated recurrent unit (GRU) neural network, to predict weather-related 

airport capacity constraints. By analyzing three years of historical weather and flight data, the 

model successfully predicted the number of flights arriving with Estimated Departure 

Clearance Time (EDCT) delays. This phase emphasized the importance of accurate, real-time 

data analysis in forecasting airport capacity constraints, highlighting the potential for further 

improvements in model accuracy through the inclusion of additional data sources. 

In the second phase, the project shifted focus towards optimizing the use of air travel 

for emergency evacuations through a cost-aware approach. Utilizing Particle Swarm 

Optimization (PSO), the study identified optimal flight selections to maximize the efficiency 

of evacuation efforts from the Daytona Beach International Airport. This phase demonstrated 

the feasibility of rapidly mobilizing air travel resources in emergency situations, prioritizing 

cost-effectiveness and operational capacity to facilitate swift and large-scale evacuations. 

The final phase of the project explored the use of a hybrid model combining a genetic 

algorithm (GA) with a neural network (NN) to plan evacuation flights. This innovative 

approach significantly reduced computational overhead while improving the efficiency and 

effectiveness of evacuation planning. The findings underscore the potential of combining 

different AI methodologies to enhance decision-making processes in emergency air mobility 

management. 
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Our recommendations for policy makers include investing in data infrastructure, 

supporting technological innovation, and updating regulatory frameworks to incorporate 

advanced predictive tools. Airline operators are advised to adopt these advanced predictive and 

optimization tools, participate in data sharing initiatives, and invest in flexible resource 

management systems. Researchers are encouraged to focus on the generalizability of models, 

the development of explainable AI, and the practical impact of these technologies on 

emergency air mobility. 
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1. BACKGROUND AND LITERATURE REVIEW 

In the United States, there are approximately 45,000 flights managed by the Federal Aviation 

Administration (FAA) every day. About 5,400 aircraft operate simultaneously in the sky at 

peak operational times, with more than 2,800,000 passengers flying daily in and out of U.S. 

airports (FAA, 2021a). Under the complex airspace system with a vast flow of aircraft and 

passengers, emergency situations could happen at any time, anywhere. Even a small error, like 

the wrong size bolt, can cause emergency situations in aviation operations. In 1990, an 

improperly installed windshield in the cockpit on BAC One-Eleven from British Airways was 

broken while the aircraft was cruising. The pilot was partially blown out of the aircraft and 

almost caused a crash, which risked hundreds of lives on the aircraft. (Ranter, n.d.). Emergency 

situations in aviation can impact the efficiency of normal operations and air mobility severely. 

Moreover, delays, incidents, or accidents resulting from emergency situations will make airline 

companies and airports lose both their reputation and economy.  

Large emergency situations, including extreme weather, military operations, and 

abnormal situations involving crewmembers or air traffic control can cause large-scale delays, 

which can affect air mobility greatly over a wide range. Analyzing the causes behind the 

emergencies that can cause large-area delays and designing a corresponding decision-making 

assistant system is one essential ways to alleviate the impact of emergency situations in the 

aviation industry. Researchers and computer scientists have studied how different reasons and 

factors affect air mobility through various techniques. This study will review earlier research 

and provide an updated view of using machine learning to improve air mobility in emergency 

situations. 

In this chapter, we will review earlier studies that aim to improve air mobility under 

emergency situations and provide a better view of using machine learning techniques and 

algorithms, including reinforcement learning, deep learning, random forest, artificial neural 

network, etc., to improve air mobility in emergency situations. In response to the issue, 

designing a decision-making assistant system has been widely studied to alleviate the negative 

impact of perturbations on aviation air mobility from a global-view perspective. Through 
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various techniques, researchers and computer scientists have studied how different reasons and 

factors affect air mobility. 

Different from other works related to the machine learning algorithm, our paper not 

only defines and analyzes air mobility and emergency situations under different environments 

and cause factors but also reviews and examines the opportunities and challenges of each type 

of machine learning technique. Although deep neural networks can remember important input 

and capture the nonlinearity, thus providing precise prediction, it is weak in predicting and 

learning based on a long time period (Hochreiter & Schmidhuber, 1997). On the other hand, 

holding too many aircraft on the ground as one of the traffic control solutions can damage both 

economies, reputation, and the environment is also a challenge that is considered in the paper. 

Using the multi-agent reinforcement learning method is one of the corresponding ways 

mentioned in the later chapter, which has the advantage of maximizing multiple agents’ gain 

in the environment without losing balance.  

1.1 Air Mobility 

Air mobility was originally used as a concept in the Army and represents the ability to ensure 

the balance of firepower, mobility, support, etc. (Tolson, 1973). In the modern aviation 

industry, this concept has been adopted to describe the ability to ensure the regular process of 

flights to maintain the normal airport capacity.  

In the real-world aviation environment, the regular process of flight for air mobility is 

complicated and should be discussed and achieved from multiple aspects. There are airlines 

that own and operate flights, airports where passengers and aircraft arrive and depart, pilots 

who fly the aircraft, and air traffic control who protect the flights from collision and ensure 

normal operation. Every aspect and part of the operation process should be considered. 

Understanding the regular process of aircraft operation is essential for maintaining and 

optimizing the normal flight process. Referring to Wang and Zhao’s paper (2020), the general 

flight phases can be divided into seven phases: planning phase, takeoff phase, climb phase, 

cruise phase, descent phase, approach phase, and taxi phase (Figure 1).  
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Figure 1. Division and composition of flight tasks and phases (Wang & Zhao, 2020, p14) 

Understanding different flight phases is important for protecting air mobility from 

emergency situations. According to Airbus Accident Statistics (2021), fatal accidents 

happened in the approach and landing phases the most, while the most incidents with no 

fatalities happened in the landing and takeoff phases. The results indicate the importance and 

complexity of each different flight phase, which is significantly influenced by the pilots, air 

traffic control, airspace and airport capacity, and weather conditions.  

To accomplish normal aircraft operation, FAA (2021b) has produced a solution that 

helps both the pilot and air traffic control with an automatic sending and receiving transponder. 

Automatic Dependent Surveillance-Broadcast (ADS-B) was required to be installed in any 

aircraft that operates in the controlled airspace after January 1, 2020. The ADS-B is a 

technology that is equipped with a 1090 MHz Mode-S transponder and utilizes satellite 

navigation technology. It can broadcast flight information unencrypted that can be received 

and decoded by any person or station on the ground with a simple set-up. (Sun & Hoekstra, 

2016) The advantage of implementing ADS-B is obvious as aircraft equipped with ADS-B can 

enhance the awareness of air traffic control and make themselves easier to recognize and track 

in the airspace. The air traffic control will receive the updated information of each aircraft 

almost every second, which enables the controller to react to any emergency situations and 

prevent accidents from happening (FAA, 2021b). ADS-B is also helpful to pilots. It provides 

speed, altitude, distance, etc., other kinds of accurate and up-to-date information. Pilots can 

also receive the location information of surrounding aircraft directly on their displays. The 

environment and aircraft information helps pilots with their situational awareness and decision-
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making process. ADS-B enhanced pilot and passenger safety greatly and improved air mobility 

from a technical aspect. 

A. Affecting Factors 

Although emergency situations can happen at any phase in flight, as analyzed in the previous 

section, the cause and reasoning of different emergency situations can be put in several large 

categories. Understanding different categories of emergency situations are helpful and 

essential to building an effective model. Bureau of Transportation Statistics (BTS), part of the 

United States Department of Transportation, collects, analyzes, and publishes accurate 

transportation data and information to the public. According to Bureau of Transportation 

Statistics report on airline on-time statistics and delay causes (Bureau of Transportation 

Statistics, 2021), there are five broad categories that affect air mobility: (1) Air carrier delay, 

(2) Extreme weather, (3) National aviation system (NAS), (4) Late-arriving aircraft, (5) 

Security. 

Figure 2. Flight Delays by Cause National (Bureau of Transportation Statistics, 2021) 

B. Air Carrier Delay 

According to the report, the number one cause of flight delays is air carrier delay (Figure 2). 

Air carrier delay occurs within the airline control system, which includes abnormal situations 
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caused by pilots or air traffic controllers, maintenance problems, fueling, baggage loading 

delay, etc., which are all defined as air carrier delay (Bureau of Transportation Statistics, 2021). 

Among all the problems, the abnormal situation caused by pilots and air traffic control has the 

most significant effect on air mobility and is also one of the most difficult factors to control 

because of the human factor. In the report, the challenge of aviation emergency and abnormal 

situations, published by NASA, Dr. Burian and Dr. Barshi (2005) addressed six issues that 

related to the crew’s reaction to emergency and unusual situations in flight, including training 

for emergencies and unusual situations, as well as human performance and cognitive 

limitations under high workload and stress. Burian stated that, “the degree to which training 

truly reflects real-life emergency and abnormal situations, with all of their real-world demands, 

is often limited,” and complex communication and cooperation are often simplified or even 

omitted in training (Burian & Barshi, 2005). In other words, real-life situations are much more 

complex and diverse than training can anticipate or simulate.  

After reviewing 107 Aviation Safety Reporting System (ASRS) reports involving 

emergency or unusual situations, Burian and Barshi found that 19 of the 25 situations that were 

managed properly were “textbook” situations (Burian & Barshi, 2003). This proves that the 

closer the simulated situation is to the real-world emergency, the more quickly and correctly 

the trained person will react and choose when faced with the situation. However, the evidence 

also reported that 85 of the 107 situations are non-textbook situations, and 79 of these 85 

situations were not handled well (Burian & Barshi, 2003). Obviously, most of the emergency 

or abnormal situations that occurred in the real world were not practiced during training. As a 

result, many flight crews did not respond well. But from another perspective, the data also 

confirmed that if more situations could be added to the training, most pilots can respond 

correctly and effectively when these emergencies occur. 

Nevertheless, after considering economic cost and time cost, it is impossible to add all 

known emergency or abnormal situations into training (Burian, Barshi, & Dismukes, 2005). 

Moreover, Burian et al. also declared that most emergencies would cause high stress while 

increasing workload, and it is hard for a human to recall all these pieces of training under the 

enormous pressure of an emergency (Burian, Barshi, & Dismukes, 2005). Therefore, the 

combination of all the statements in Burian et al.’s report demonstrated the importance and 
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urgency of a decision-making assistance system for overcoming the abnormal situation of the 

crewmember. 

C. Extreme weather 

Extreme weather is the cause of only 0.82% of flight delays, which is insignificant compared 

to air carrier delays (7.53%) or aircraft arriving late (6.63%). However, the cost of damage, 

delays, and the evacuation and settlement for passengers due to extreme weather are 

unneglectable. Extreme weather, including hurricanes, blizzards, or tornados, can cause large-

area delays, which affect the air mobility of multiple numbers of airports and airlines severely. 

Choi et al. (2016) pointed out in their paper that weather as one of the causes of the delays is 

closely related to other categories like National Aviation System and late-arriving aircraft. 

Although airlines report late-arriving aircraft as the delay cause instead of reporting weather, 

the weather is still one of the factors that could cause late-arriving aircraft. Therefore, extreme 

weather could account for 40% of total delay minutes, because it shares and causes the delays 

along with other factors (Choi et al., 2016). In the study, Choi et al. applied machine learning 

to build a prediction model based on historical data on traffic and weather. The supervised 

machine learning algorithm was implemented in the model. Although the predictive 

performance of the model is lower due to the uncertainties in the forecast, it still provides 

higher accuracy results with actual weather. Two possible prediction error sources are 

discussed: the limitation of the current model and the non-weather factors that caused flight 

delays which are not able to be captured by the model. The result indicates the randomness and 

uncertainty in predicting weather to keep the normal flight process.  

In our case, we leverage Multi-agent Deep Reinforcement Learning (MADRL) instead 

of the supervised machine learning algorithm. Also, the uncertainty will be a consideration in 

our model, which will improve the performance of our model when compared to theirs. 

Another difference between our study and theirs is the object or prediction that the model is 

facing. Choi et al. (2016) focuses on the extreme weather factor while we also consider other 

factors, including the abnormal situations of the human and military operations. The difference 

in influencing factor consideration could lead to a universal result and help decision-making 

in more emergency situations. 
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D. Issues and Challenges 

When air mobility is affected by the five factors listed above, the cost of delay will become a 

challenging issue. For airlines, the cost consists of different components. Cook and Tanner 

(2009) considered delay cost management and divided distinct types of delay costs in 

accordance with each different phase of flight. Passenger costs, crewmember, maintenance 

costs, etc., are all considered airline delay costs and the fuel consumption while the aircraft is 

in the airborne phase should also be considered. Cook and Tanner provide the delay cost 

management from two large levels: strategic and tactical. The strategic level includes 

“resources committed at the planning stage,” which means to predict and prevent delays or 

contingencies in advance. The tactical level was divided into three phases: pre-departure, 

airborne, and post-flight. Each phase has unique factors and solution.  

1.2 Emergency Situations 

Emergencies and unusual situations occur every day on flights and airports around the world. 

Whether it is an emergency serious enough to endanger people's lives and property or a small 

incident that is easily managed, it will have a negative impact on air mobility (Burian, Barshi, 

& Dismukes, 2005). By definition, emergencies are situations that people are not familiar with, 

which are unpredictable and need immediate attention and action according to the situation. 

These emergency situations can cause intense feelings of anxiety, uncertainty, and stress (Van 

de Walle & Turoff, 2008). Emergency situations can include a large variety of factors and vary 

in scale and magnitude, from small vehicle accidents to large area full-scale disasters. 

However, no matter how large scale the emergency situations are, there will always be 

human and economic losses caused by emergency situations. Therefore, emergency 

management becomes an important approach to analyzing the emergency and reducing the 

impact. Using computer vision as a modern technology to prevent and mitigate emergency loss 

is one of the main research fields for emergency situations. There is a large variety of types of 

emergencies, and many of them have not been studied in computer vision.  
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Lopez-Fuentes et al. (2018) clarified in the study that emergencies like famine and 

pollution cannot be easily detected by visual sensors. Therefore, emergency situations are 

distinguished into two generic groups: natural and human-made emergency situations (Lopez-

Fuentes et al., 2018). In our study, emergency situations are also distinguished in the same 

way: natural emergencies include extreme weather and human-made emergencies include 

abnormal situations and military operations. In this case, we will consider the situation as an 

emergency when one or more of the following unexpected situations is met (Lopez-Fuentes et 

al., 2018): 

• a sudden situation which would or has caused risks to health or life of a person or 

a group of persons. 

• a sudden situation which would or has caused potential loss of economy or 

reputation of a person, a group, or a company. 

• a sudden situation which would or has caused damage to properties or environment. 

In their study, Lopez-Fuentes et al. (2018) divide the life cycle of emergency 

management into four main phases: preparedness, response, recovery, and mitigation. 

Emergency situations occur between the preparedness and response phases, which are 

unpredictable most of the time. Because of the unpredictable character of emergency 

situations, the chances of emergencies could not be eliminated, only reduced. Thus, the more 

preventive actions or measures made in preparedness, the bigger chance to reduce the impact 

that could be brought by emergency situations.  

In the aviation industry, the evacuation under emergency situations can be divided into 

two categories: aircraft evacuation and airport evacuation. According to the Federal Aviation 

Regulations (FAR) Part 25, “for airplane having a seating capacity of more than 44 passengers, 

it must be shown that the maximum seating capacity can be evacuated from the airplane to the 

ground under simulated emergency conditions within 90 s” (FAR, 2002). This is the “90 s 

evacuation rule”, which is required for all the aircraft from manufacturers and airlines, has 

been proven effective for passengers’ quick evacuation under emergency situations by 

numerous studies. For instance, in March 2006, there were 853 passengers, 18 crew members, 

and two pilots were evacuated successfully in 78 seconds in the A380 evacuation made by 

Airbus (Daly, 2006). Although the 90 seconds test has been proven as certification for aircraft, 
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there are still some difficulties with the test. Passenger safety is not protected while evacuating, 

which means the test participants may get injured while doing the test. Data shows that about 

6% of participants in the 90 seconds test are injured, ranging from cuts to broken bones 

(Congress, 1993). Another difficulty that exists in the evacuation test is the difference between 

real-world emergency situations and simulation. Sometimes a real emergency scenario is hard 

to achieve, which may cause a discrepancy between the test and evacuation (Fang et al., 2016). 

Another category of evacuation in the aviation industry is airport evacuation. In the 

Code of Federal Regulations (CFR) title 14 part 139.325, FAA required that each certified 

airport must develop and maintain an airport emergency plan (AEP), which is designed “to 

minimize the possibility and extent of personal injury and property damage on the airport in 

an emergency.” However, there is no rule for airport evacuation that points out a specific time 

frame for emergency situations, which is completely different from the aircraft evacuation’s 

“90 s evacuation rule”. In this case, time is not a variable nor a criteria to evaluate the 

effectiveness of an evacuation anymore. One of the most significant difficulties in airport 

evacuation and AEP is that it is impossible to apply a generic plan to all the varying designs 

and layouts of airports. To design and evaluate an effective airport evacuation, researchers will 

need to explore and build a model based on different airports because of the different layouts 

and locations, which is a time-consuming and complex task.  

A. Large-area Delay 

When the degree of delay is measured by the number of flight delays and the delay time reaches 

a certain level, it is called large-area flight delay (LFD) (Gao et al., 2012). Other than aircraft 

accidents and incidents, large-area flight delays or flight cancellations are the last things 

passengers and aviation staff want to incur. There is no doubt that mass delay will cause a loss 

of time and money. For airlines, the important loss of credibility and reputation is also at stake. 

However, the most critical impact is that flight delays may compromise aviation safety. Due 

to the negative effects of LFD, Gao et al. focused on managing unexpected situations in 

response to LFD in their research paper, “Flight rescheduling responding to large-area flight 

delays” (Gao et al., 2012). Since LFD can have too many adverse consequences and will 

intensify over time, it is urgent for the aviation industry to manage those unexpected events. 
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Therefore, the research of Gao et al. is important, and it also proves the significance of our 

project to design a real-time flight rescheduling solution to resume normal operations in 

response to disruptions. 

It has been stated that anything unexpected that causes the flight to deviate from the 

original plan is called “disruption,” and Gao et al. claimed that both economic losses and non-

quantifiable factors such as passenger satisfaction are considered when managing disruptions 

(Gao et al., 2012). Gao et al. emphasized the importance of the real-time status of flights, and 

according to the real-time status, the flights are divided into six classes to consider their priority 

(Gao et al., 2012). For example, a flight in the air is “prior to boarded” flight. Since a non-

quantitative loss would also be considered, they designed priority indicators as well, such as 

flights with very important persons (VIP) and international flights, etc. (Gao et al., 2012). In 

other words, for all flights, their priority is decided by their statuses, while the flights in the 

same class are sorted by priority indicators.  

After determining the priority of the flight, Gao et al. proposed two mathematic 

programming models to reschedule flights, and many rules were set in the inputs to get a 

credible output (Gao et al., 2012). Our research methods are similar in that they built 

mathematical models while we plan to use Multi-agent Deep Reinforcement Learning 

(MADRL) for flight rescheduling. Even though Dr. Gao et al. proved that their model is 

suitable to be applied to management disruptions (Gao et al., 2012), but it still has limitations 

when compared to our model. First, we consider the interests of more people, not only airlines 

and passengers but also airports, air traffic controllers, and other stakeholders. Moreover, while 

they only considered reordering the flights, we also considered rerouting and retiming the 

flights. Furthermore, they did not consider flight cancellation and other factors due to 

complexity (Gao et al., 2012). We have five real-world data sources such as ADS-B and AOTP 

to help our deep learning models to build an environment as close to the real world as possible. 

As a result, although we are both trying to reduce the negative effects of LFD, our model is 

more comprehensive and closer to reality and, therefore, can more accurately respond to LFD. 
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B. Extreme Weather 

Extreme weather is one of the most influential factors that can cause LFD. According to 

Extreme Weather on Earth, posted on National Geographic, Extreme weather includes 

hurricanes, tornadoes, floods, blizzards, hail, etc. (National Geographic Society, 2019).  

Hurricanes and tornadoes are violent storms accompanied by heavy wind and rain, 

which not only cause large area delays for airlines but can pose risk to life and property. In 

2017, the Florida Department of Transportation (FDOT) reported that Hurricane Irma caused 

roughly 6.8 million people, including Florida residents and tourists, to evacuate and head to 

the safe locations (FDOT, 2018). This evacuation was recorded as the largest evacuation in 

U.S. history (FEMA, 2018). Hurricane Irma caused many problems and affected people’s 

living and evacuation process. Because of geographical factors and human issues, the fuel 

supply system in Florida is vulnerable (FDOT, 2018). Fuel shortage was the first problem to 

be solved in Florida during the hurricane. When the evacuation started, some gas stations in 

Florida, which started with a full supply of fuel, were empty in as little as two hours (FDOT, 

2018). The congestion on the highway caused by the substantial number of people evacuating 

in vehicles also prevented quick evacuation from the hurricane. Thus, evacuating through an 

airline could be an option when fuel is limited, and cars are not able to transport people to a 

safe location. 

No one living in the Atlantic Basin is unfamiliar with hurricanes, and everyone has 

heard and witnessed their devastation to some extent. Barry (2008), Doctor of Philosophy in 

Atmospheric Science, stated that the number of hurricanes in the Atlantic Basin each season, 

and the potential damage caused by these storms, have shown a cyclical pattern that changes 

on the scale of decades in Hurricanes: A primer for the aviation professional. Unfortunately, 

Barry also claimed that hurricane activity has recently increased, and this increase is likely to 

continue for up to 30 years (Barry, 2008). Of the 258 weather disasters in the U.S. since 1980, 

tropical cyclones have caused the most damage: $945.9 billion in total, with an average loss of 

nearly $21.5 billion per event. They also caused the most deaths: 6,593 between 1980 and 

2020. Since the losses and casualties caused by hurricanes are so shocking, a model that can 

predict the trend of hurricanes and help people evacuate is very necessary. As a result, 
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Davidson et al. (2020) built “a new integrated scenario-based evacuation (ISE) framework to 

support hurricane evacuation decision making”. 

Davidson et al. (2020) pointed out that as hurricane proceeds, its path, velocity, size, 

and intensity change over days and thus result in the spatial and temporal variation of wind, 

storm surge, and rainfall. A hurricane is like a fickle person, and it can change its mind any 

second. Maybe one second, its path shows that it will end up in the ocean; the next second, it 

looks like it is going to hit land. As a result, the dynamics, uncertainties of the hurricane 

activity, and interactions of human and natural systems are the three critical challenges to 

hurricane evacuation (Davidson et al., 2020). However, even the most widely used 

HURREVAC systems (FEMA, 2017) do not fully cover these three important challenges, and 

due to the complexity, rain and wind are not always considered alongside hurricane hazards 

(Davidson et al., 2020). However, the rain and winds are the most violent effects of a hurricane; 

rainfall might cause flooding while winds could result in extensive damage. Hurricane-induced 

flooding, for example, took days to recede from Louis Armstrong International Airport (MSY) 

in New Orleans after Hurricane Katrina passed (Hurricane Katrina and Aviation, 2005). This 

is exactly the meaning of Davidson et al.’s research and the advantages of the ISE system.  

For a more accurate and up-to-date decision response to hurricanes, Davidson et al. 

(2020) integrated risk, people behavior, and transportation modeling by using a “multi-stage 

stochastic programming (MSP) model” and a “tree of evacuation order recommendation” 

would be built. In the ISE framework, for each hurricane scenario, s, every 15-minute time 

step time, t, all the latest information is recorded, and this procedure will keep repeated to help 

the emergency managers to make the correct decision (Davidson et al., 2020). A case study of 

Hurricane Isabel was introduced and demonstrated that the ISE model could minimize travel 

risk and time for people who need to be evacuated (Davidson et al., 2020).  

The aviation industry also desperately needed a decision-making model in the face of 

such extreme weather, as Barry (2008) declared that “aircraft are particularly vulnerable to the 

destructive force of these storms, especially those in the general aviation class.” As a result, 

while considering a hurricane, Davidson et al.’s research favors evacuations in the event of a 

hurricane, and our project favors the proper reaction and decision-making of the aviation 

industry, including airports, ATC, airlines, aircraft, and pilots. 
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In 2005, American Airlines substituted two Boeing 777s and two Boeing 767s for the 

narrower and smaller aircraft to accommodate the request of additional passengers due to 

Hurricane Rita (PR Newswire, 2005). The larger aircraft provides approximately 360 

additional seats for evacuation compared to narrower body aircraft, which indicates the 

possibility and reliability of airline evacuation when extreme weather occurs. In 2017, United 

Airlines also provided “bonus miles, matching funds raised for relief, and added extra flights” 

for passengers evacuating from Hurricane Irma (Airline Industry Information, 2017). United 

Airlines flew a Boeing 777 aircraft to San Juan, Puerto Rico, as an extra way to move the 

people there to a safer location. In both cases, airlines and their flights played a key role in 

evacuation in natural disasters, which reiterates the importance of air mobility. It is essential 

to keep air mobility from being affected by extreme weather and disaster, which is one of our 

project’s goals. Predicting the effect that extreme weather may have on air mobility and acting 

accordingly would be beneficial for both passengers’ safety and airlines’ economy. 

C. Abnormal Situation 

Even though pilots and flight crews are considered largely responsible for the main cognitive 

burden when managing emergencies, it is also widely believed that the handling of 

emergencies is influenced by communication and coordination with air traffic controllers 

(Burian et al., 2005). Air traffic controllers (ATC) play a critical part in all flights. They are 

responsible for scheduling flights, managing traffic, handling emergencies, and making 

decisions. In fact, compared to pilots, air traffic controllers’ jobs are more complex and 

essential to aviation safety since their decisions and instructions would affect multiple aircraft 

in the sector, not just one. 

In the article, “Managing emergencies and abnormal situations in air traffic control 

(part 1): Taskwork strategies,” Malakis et al. (2010) repeatedly stressed the importance of ATC 

and the challenges of their work. They stated that ATC is a “complex safety-critical system” 

with five work characteristics, including “rapidly escalating situations,” “severe time 

pressure,” “severe error consequences,” “multi-component decisions,” and 

“conflicting/shifting goals” (Malakis et al., 2010). In other words, air traffic controllers must 
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manage sudden changes in flight conditions with limited thinking and response time, and a 

small mistake could lead to serious undesired results.  

The main goal of this paper is to generate a taxonomy of cognitive strategies in ATC 

taskwork. Since thinking strategies are closely related to making decisions and solving 

problems, different decision models were compared and analyzed and resulted in the T2EAM 

Model, which was based on five thinking strategies: anticipation, recognition, uncertainty 

management, planning, and workload management (Malakis et al., 2010). It has been claimed 

that controllers need to recognize signals of impending situations, anticipate outcomes as well 

as coordinate the plan while seeking available information and managing workload (Malakis 

et al., 2010). However, controllers are human, and no matter how trained they are, human 

beings make mistakes. According to Models of man; social and rational, (Herbert, 1957), 

stated that the deviation between human decision-making and rational decision-making models 

cannot be eliminated. When faced with a problem, people tend to use the first option that meets 

their needs rather than identifying and evaluating all available options and choosing the best 

one. However, computer systems do not have this problem; they can identify thousands of 

options from a database and evaluate them within a second. As a result, it is urgent for the 

aviation industry to have a decision-making assistance system to help ATC make decisions 

and thus resolve the emergency and reduce its impact. 

Malakis’s paper concentrated on en-route controllers, and to generate a taxonomy of 

cognitive strategies in ATC taskwork, two field studies took place in the paper. In the field 

studies, emergency and abnormal situations training were observed to collect data (Malakis et 

al., 2010). However, “the novice controllers did not achieve satisfactory score,” and the results 

showed that there is a big gap between the mean score of novice controllers and the mean score 

of the expert controllers due to experiences (Malakis et al., 2010). The difference in 

performance in identifying emergencies and planning accordingly can lead to accidents in real 

life. This also proves the necessity of our project. 

Although Burian and Barshi (2003) reviewed substantial amounts of ASRS and NTSB 

reports to produce their statements, the way they got their evidence is still somewhat 

monolithic. On the contrary, our research pays more attention to the diversity and 

comprehensiveness of the data, including ADS-B Data, Airline On-Time Performance Data 
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(AOTP), and Quality Controlled Local Climatological Data (QCLCD), Airport Capacity 

Profiles, and SWIM Records. All these data sources allow our deep learning models to build 

an environment as close to the real world as possible and thus predict the risks and influence 

of emergencies on air mobility systems. Moreover, the sample size and the number of people 

participating in the studies are limited, resulting in reduced reliability of the paper. 

Furthermore, since the data comes from observation and human performance may change 

while being observed, the validity of the paper is also reduced. On the contrary, our research 

pays more attention to the reliability and validity of the data. Millions of real-world data and 

cases from diverse sources will be examined and thus help our deep learning models to build 

an environment as close to the real world as possible to make the best decision for the 

emergency or abnormal situation. 

1.3 Machine Learning 

Machine learning (ML) is “the study of computer algorithms that can improve automatically 

through experience and data” (Mitchell, 1997). The definition of machine learning has pointed 

out one of the most significant advantages of machine learning, which is to learn through 

experience and data automatically and improve the results. Machine learning allows 

programmers not to have to specify all the steps for the machine learning program to achieve 

the goal; instead, the program itself can learn from the data provided and figure out the solution 

for certain tasks. The self-teaching characteristic is so important and helpful, especially in most 

advanced tasks, including speech recognition, computer vision, etc. In those advanced and 

complex tasks, it is more effective and realistic for the program to develop its own algorithm 

than the human designing a complete algorithm and steps for it. Under the wide title of machine 

learning, there are several types of approaches, and these approaches can be divided into three 

broad categories: supervised learning, unsupervised learning, and reinforcement learning. The 

following examples and applications will fall into these three big categories and indicate the 

wide use of machine learning in performing complex tasks in industries including aviation. 
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A. Reinforcement Learning 

Reinforcement learning is one of the powerful and effective machine learning training methods 

that let the agent choose what to do and how to achieve the goal by maximizing the reward at 

each different state in the environment (Sutton & Barto, 2018). The training agent directly 

interacts with the environment and improves its solution by learning from the environment. 

Reinforcement learning has a unique feature that does not require a complete model or a 

supervisor (Sutton & Barto, 2018). However, the training agent will need an environment to 

interact with and learn from the results, requiring a specific environment. In our case, the 

environment will be built using the deep learning technique, which will be discussed later in 

the chapter.  

In the aviation industry, machine learning was widely used because of the self-learning 

discipline and its effectiveness. Prior research in air mobility using the reinforcement learning 

method includes solving the air traffic flow management problem. Air Traffic Flow 

Management (ATFM) generates the optical speed for aircraft. It could count the speed of 

aircraft and many other factors into airspace capacity consideration to optimize the enroute 

efficiency and decrease the delay rate (Bertsimas & Patterson, 1998).  

With the continuously growing demand for flight and limited airspace capacity, 

airspace congestion has become an urgent problem that needs to be solved. ATFM is a helpful 

solution that was utilized to control and manage the air traffic flow to prevent and reduce 

congestion. With the help of ATFM, researchers have investigated more useful and effective 

solutions and models using the reinforcement learning approach and other machine learning 

algorithms. For instance, Crespo et al. (2011) presented a model with the Decision Evaluation 

and Support Module (MAAD), which is a computational agent that utilizes reinforcement 

learning. By utilizing MAAD and reinforcement learning, the module managed to provide 

adequate suggestions for traffic flow under the changing scenario. Thus, the traffic sectors 

between capacity and demand in the module will not reach an imbalance. In the research, the 

implementation of the computational agent was achieved by reinforcement learning, which 

uses Q-learning Algorithm. The author pointed out that there are five measures to control the 

applicable air capacity and traffic flow, which can be summarized as: 
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• reordering; 

• rerouting; 

• and retiming. 

The Q-learning Algorithm was used in the decision-making process in ATFM and 

allowed the computational agent to deal with the flight departures and the related time delay, 

which holds the aircraft on the ground (Crespo et al., 2011). However, holding too many 

aircraft on the ground will decrease the efficiency of a certain airport, which will increase the 

workload for both air traffic controllers and pilots. Fuel consumption is also another 

concerning problem that could damage the economy of airlines and the environment. The 

traffic flow control measures are grouped by the amount of time needed for departure, which 

are 5, 7, 10, 15, 20, and 25 minutes. MAAD is used and suggests adequate traffic flow 

measures. Q-learning algorithm also successfully converged for the behavior of the 

computational agent in the complex air space scenario.  

B. Markov Decision Process (MDP) 

The basic idea behind reinforcement learning is to model sequential decision-making problems 

by Markov Decision Process (MDP). MDP is also known as the Markov chain, which has 

Markovian states and transition probabilities with unobservable states (Mahboubi & 

Kochenderfer, 2017). In the paper, MDP was defined as “a stochastic process with Markovian 

states s∈S and transition probabilities sk+1∼T(⋅∣sk), where k is a time index. In certain 

applications, the state of the system cannot be directly measured, but instead observations o∈ 

Ω are obtained from a distribution conditional on the current state, i.e., ok ∼ O(⋅∣sk).” Such 

an MDP system with hidden states is called Hidden Markov Model (HMM). As discussed 

before, a learning agent will be trained to learn the best solution and action in an environment 

with policy and states in MDP. There will be multiple numbers of agents in our environment, 

including airports, aircraft, airlines, air traffic control, etc. The goal for each agent is to 

maximize the reward or gain. 

Researchers have successfully applied HMM in many air traffic management problems 

to model the time series data—examples include intent prediction, target tracking, and speech 
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recognition (Mahboubi & Kochenderfer, 2017). Lowe and How utilized the MDP approach to 

build an HMM model as the navigation model, thus predicting the action of human pilots to 

help the Unmanned Aerial Systems (UAS) to detect, sense, and avoid the intent collisions with 

other aircraft in the uncontrolled airspace (Lowe & How, 2015). In the paper, the process of 

predicting the flight path of other aircraft is achieved by following four steps: learn, estimate, 

predict, and plan, and the author claims that methods including MDP could successfully 

address the first three elements. The result indicated that the navigation model based on the 

HMM model could generate a concise and accurate representation of human-controlled 

aircraft, making the predictions more efficient. The method and simulation Lowe and How 

used in the research improves the result significantly compared to previous methods in 

predicting aircraft trajectory (Lowe & How, 2015). Utilizing the advantages of reinforcement 

learning and the MDP approach, we could avoid building a complex and precise model while 

keeping the concise and accurate feature in our approach to predict the flight path of aircraft 

and the potential collisions. 

Another paper completed by Spatharis et al. (2019) also illustrated the effectiveness of 

applying reinforcement learning methods and Markov Decision Process in solving the Demand 

and Capacity Balance (DCB) problem. DCB describes the balance between capacity and 

demands, which was also mentioned in the previous machine learning module. DCB is one of 

the main problems related to air space congestion and could be affected by or cause emergency 

situations. Different from the MAAD and reinforcement learning approach (Crespo et al., 

2011), the agent in this research model represents flights that aims to get the best performance 

while considering the operational constraints of airspace and preventing congestions. 

C. Artificial Neural Network 

For most stakeholders in the aviation industry, time is money. Therefore, the more efficient 

the operation of airports and aircraft, the greater the benefits. Since operational efficiency is 

highly dependent on appropriate actions and reactions to the current situation (Schultz et al., 

2021), there is an urgent need for a system to analyze current constraints and predict future 

conditions. Of all constraints, local weather is critical to aircraft and airport operations, and 

this influence could further impact the whole aviation network (Schultz et al., 2021). Frequent 
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flyers know that if one airport is closed or affected by weather, flights at connecting airports 

can be delayed or canceled with a ripple effect. Thus, the systematization of prospective 

weather effects facilitates effective consideration at the tactical level in airport operations 

(Schultz et al., 2021). Due to the above factors, Schultz et al. (2021) used machine learning 

methods to quantify the correlation between airport performance degradation and the severity 

of local weather events, and created a new method that can predict future system states at 

airports. 

By utilizing Artificial Neural Networks (ANNs), the study managed to classify 

different airport performances. ANN, as a machine learning approach, is a type of math model 

that simulates the operation and construction of neurons, like a biological brain. ANNs are 

comprised of one or more hidden layers between the input layer and output layer. Each artificial 

neuron connects to another neuron and has its associated weight and threshold (Stevens et al., 

2020. The connections between artificial neurons will transmit signals to other neurons in the 

model. If the output of one of more neurons becomes above the threshold value, then the neuron 

will be activated and send data to the next layer of the model. In this study, Schultz et al. (2021) 

utilized ANN because of the large amount of data that needs to be analyzed. The ANN serves 

as an “adaptive intermediate model” to process the data of airport performance and the weather. 

The advantage of self-learning of ANN helped with the progress, provided more accurate data, 

and improved the results. 

To analyze weather and airport performance, Schultz et al. (2021) utilized different 

credible data sources, including “flight plan and weather data from major European airports 

for the year 2013-2015”. Moreover, in the analysis, London-Gatwick Airport (LGW) was 

considered a typical use case, as the airport has been operating at its declared capacity for many 

years (Schultz et al., 2021). Airport performance is mainly about its capacity under certain 

conditions, and Schultz et al. (2021) pointed out that LGW operates one of the busiest runways 

in the world, and only one runway in the airport has an instrument landing system. As a result, 

deviations from optimal conditions can immediately affect airport performance and make it 

difficult to recover from these conditions (Schultz et al., 2021). In other words, predicting 

expected airport performance based on local conditions can significantly improve airport air 

traffic flow and capacity management (Schultz et al., 2021).  
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To achieve the goal of providing a pre-alert and decision-making assistant system for 

passengers and airport staff when emergency situations occur, we must leverage the power of 

machine learning, which is one of the most essential and helpful tools.  

D. Deep Learning 

Deep learning is a branch of the broad machine learning family that is based on artificial neural 

networks (ANNs). ANNs, as mentioned in the previous machine learning chapter, are inspired 

and designed by the information processing of the biological brain. Deep learning can be 

supervised, unsupervised, or semi-supervised (LeCun et al., 2015). There are many examples 

and applications of deep learning, including deep neural networks (DNN), deep reinforcement 

learning, deep belief networks, etc. Deep learning has been applied to many industries and 

fields, including machine translation, speech recognition, climate, and computer vision.  

           Rahman and Hasan (2018) introduced a Long Short-Term Memory Neural Network 

(LSTM-NN) model based on a deep learning algorithm. In the paper, the focus point is on 

hurricane evacuation and the traffic speed prediction on the freeway. The congestion on the 

highway caused by large-scale evacuation by vehicle presents a challenge in achieving the goal 

of quick evacuation from a hurricane. Congestion on the freeway can cause slow and delayed 

evacuation, which will decrease the effectiveness of evacuation, putting people’s lives in 

danger. Rahman and Hasan (2018) aimed to provide accurate traffic predictions for evacuation 

in a hurricane. LSTM-NN was applied to predict the short-term vehicle speeds on the highway 

during the hurricane evacuation period. The author pointed out that the LSTM neural network 

can be considered a specific type of Recurrent Neural Network (RNN – Figure 3). One of the 

biggest advantages of using RNN is that it can process sequential data precisely compared to 

other traditional classifications. Because of the internal memory, RNN can remember 

important input thus providing precise prediction.  
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Figure 3. A recurrent neuron unrolled process (adopted from Géron, 2018) 

Although RNN can capture the nonlinearity and provide precise prediction, it is weak 

in predicting and learning based on a lengthy period (Hochreiter & Schmidhuber, 1997). 

Thus, LSTM-NN was introduced as an improved approach that overcame the disadvantages 

of RNN. LSTM-NN capture long-term dependencies instead of being limited to short-term. 

Long-term dependencies make the prediction accurate and could determine the optical time 

lag and window for the time series problems. 

E. Random Forest 

Zhao et al. (2020) investigated a decision-making assistant system for pre-evacuation by using 

one of the machine learning techniques: random forest (RF). Random forest is an ensemble 

learning method that constructs a wide range of decision trees at training time for classification 

and regression (Zhao et al., 2020). Using the random forest method in the study has two 

significant advantages. RF can reduce the “overfitting problem of the individual decision tree 

by using bootstrapping.” Also, RF can enhance the accuracy of prediction by capturing the 

potential interactions in the complicated input data automatically, which is a substantial 

improvement compared to other traditional statistical models. RF, as a machine learning 

technique, has generated better predictive performance compared to logistic regression (Zhao 
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et al., 2020). The result of the model and study also proved the advantages of using RF. It 

successfully captured the interactions and nonlinearities among independent variables and the 

outcome, which is achieved by its rich behavioral interpretations.  

In the study, the authors pointed out that the evacuation time for buildings depends on 

the building occupants’ behavior in the first stage of evacuation. Thus, controlling the behavior 

or assisting the building owner’s decision-making processes becomes important for a 

successful and effective evacuation. Zhao et al. (2020) focus on the microscopic level of 

investigations, which is investigating how the building occupants respond to social and 

environmental factors. By using machine learning, several affecting factors were investigated 

and discussed. In the study, three modeling approaches were analyzed from the modeling point 

of view (Zhao et al., 2020). The first approach focused on the pre-defined time that was 

assigned to the agents at the pre-evacuation level. The second approach focused on the 

sequences that were assigned to the agents. The third approach predicted the decision-making 

of agents while considering both the external and internal factors that could affect the response 

(Zhao et al., 2020). Although the third approach could overcome the weakness of the first two 

approaches, the author pointed out that the third approach still needed the developers to select 

the relevant affecting factors and algorithm to simulate agent behavior. The study indicated the 

potential of using machine learning techniques in investigating the complex evacuation 

environment and affecting factors, which is helpful in building a decision-making assistant 

system for evacuation under emergency situations. And the author also pointed out that 

machine learning-based modeling can be combined and integrated with the agent-based 

evacuation model. The integration of both models will develop a more realistic and accurate 

simulation for emergency situations (Zhao et al., 2020). 

F. Multi-agent Deep Reinforcement Learning (MADRL) 

Tang and Xu (2021) utilized the multi-agent reinforcement learning (MARL) method to 

analyze the air traffic flow management and studied the demand-capacity balancing problem 

(DCB). By adopting the MARL technique, the intelligent agent in the DCB problem can learn 

a proper solution through numerous attempts and errors. MARL also allows the programmer 

to be free from formulating complex models by hand. Researchers observed that the multi-

24 



 

 

 

 

 

 

 

 

 

 

agent reinforcement algorithm perform better than other methods in terms of average aircraft 

delay time, average flight delay number, and the percentage of delayed flights. (Tang & Xu, 

2021) Thus, the result indicated that using a reinforcement learning algorithm is appropriate 

and accurate for calculating the average delay information and data in our environment. 

However, there are still problems that need to be addressed when using the multi-agent 

deep reinforcement learning method. In a cooperative environment of multiple agents, the 

policies and instructions for each different agent can be difficult to perform or optimize because 

of the curse of dimensionality in the environment. On the other hand, the delay between the 

correlated actions and rewards is unignorable and significant in the cooperative multi-agent 

environment. Because of the determined character of maximizing the gain for each different 

agent, there will be the agent who cannot receive their deserved reward and is affected by other 

agents’ favorable actions. Thus, to address the problems of the curse of dimensionality and the 

unbalanced rewards between multiple agents, the agents should be trained from a macro aspect, 

which helps the agents have a bigger view of the whole environment and system, thus 

improving the results and solutions for the multi-agent model.  

The research done by Menda et al. (2019) shows the effective method of using 

reinforcement learning in a cooperative multi-agent environment to solve the difficulties of 

unbalanced reward and policy optimization. In the study, researchers managed to train the 

agents through a set of multi-step macro actions. Instead of performing low-level primitive 

actions, the agents, after training, could perform high-level macro actions such as point-way 

tracking. Thus, the macro-actions and views performed by each agent in a multi-agent 

environment can reduce the impact of unbalanced rewards or actions between different agents. 

On the other hand, Menda et al. (2019) also implemented decentralized policies in their model 

and environment, which helps each agent make independent decisions based on the situation 

it is facing and the observation it has of the environment. Agents will follow the decentralized 

policies asynchronously while performing the macro-actions for a sharing goal.  

The macro view and actions for multiple agents and decentralized policies are essential 

for our model and environment, where we implement macro-actions for each different agent, 

including airport, aircraft, airline, air traffic control, and passenger. Those five different agents 

will need to act asynchronously while having the common goal of macro-actions: to maintain 
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and improve air mobility under emergency situations. By utilizing an event-driven method, we 

are able to implement both macro-actions and decentralized policies for the five different 

agents in our environment. When an agent achieves a primitive goal or specific event from the 

completion of macro-actions, it will be approved to choose a new macro-action. This way, the 

agents can work simultaneously without affecting others while all trying to achieve the macro 

goal, which is to improve the air mobility in emergency situations.  
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2. PROBLEM STATEMENT AND SOLUTION OVERVIEW 
The advent of unforeseen emergencies, including natural disasters and other crisis situations, 

poses significant challenges to air mobility, impacting both flight operations and passenger 

safety. The primary problem addressed by this project is the need for robust, efficient, and 

adaptable air traffic management systems capable of minimizing disruptions and optimizing 

evacuations during emergencies. Traditional approaches fall short in predicting airport 

capacity constraints and effectively managing air resources under rapidly changing conditions. 

This project aims to fill these gaps by leveraging advanced machine learning and optimization 

techniques. 

2.1 Problem Statement 

Emergency situations necessitate swift and decisive action to ensure the safety and evacuation 

of affected populations. Air mobility systems, integral to emergency response efforts, must 

contend with numerous challenges: 

• Predicting Airport Capacity Constraints: Accurately forecasting how 

weather and other emergency-related factors affect airport operations, including 

flight delays and cancellations. 

• Optimizing Resource Allocation: Efficiently managing limited air resources, 

such as aircraft and crew, to facilitate the rapid evacuation of civilians from 

disaster zones. 

• Planning Evacuation Flight Destinations and Schedules: Developing 

optimal flight plans that accommodate increased demand for evacuations while 

minimizing disruptions to the broader air traffic system. 

Solution Overview 
The "Improving Air Mobility Under Emergency Situations" project employs a multi-faceted 

approach to enhance air traffic management during emergencies, leveraging the power of 

machine learning and optimization algorithms. In Phase I, the project introduces an explainable 

machine learning model utilizing a Gated Recurrent Unit (GRU) neural network. This model 

is designed to predict weather-related airport capacity constraints, specifically focusing on 
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flights arriving with Estimated Departure Clearance Time (EDCT) delays. By integrating 

diverse datasets, including historical weather observations, flight schedules, and delay records, 

this phase provides critical insights into the factors influencing flight delays. The model's 

explainability ensures that its predictions are interpretable and actionable, enabling 

stakeholders to make informed decisions in real-time. 

In the subsequent phase, the project shifts its focus towards optimizing the allocation of flight 

resources for emergency evacuations through a cost-aware approach. Utilizing the Particle 

Swarm Optimization (PSO) algorithm, Phase II identifies the most efficient strategies for 

diverting flights to facilitate rapid civilian evacuations while minimizing operational costs. 

This optimization considers several constraints, including the airport's operational capacity and 

the availability of flights, to ensure a balanced and effective evacuation strategy. The cost-

effectiveness of the selected flights is paramount, ensuring that the evacuation process is not 

only swift but also economically viable, thereby maximizing the utility of limited resources 

during critical times. 

The final phase of the project introduces a novel hybrid model that combines the strengths of 

a genetic algorithm (GA) with the speed of a neural network (NN) to plan evacuation flight 

paths efficiently. This Neural-Network Accelerated Genetic Algorithm approach significantly 

reduces the computational overhead typically associated with optimization tasks, allowing for 

the rapid generation of optimal evacuation plans. By training the NN on data from various 

airports, the model achieves a level of generalization that enables its application across 

different emergency scenarios and geographical locations. This phase exemplifies the project's 

commitment to developing scalable, efficient solutions for emergency air mobility 

management, demonstrating the potential of AI and machine learning to revolutionize how the 

aviation industry responds to crises. 
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2.2 APPROACH AND METHODOLOGY 

This project employed a systematic approach and advanced methodologies to address the 

challenges of air mobility in emergency scenarios. This section outlines the comprehensive 

strategies, analytical frameworks, and technical tools utilized across the three phases of the 

project to achieve its objectives. 

Phase I: Explainable Machine Learning for Flight Delay Prediction 

• Objective: To develop a predictive model capable of forecasting weather-

related airport capacity constraints, focusing on the number of flights arriving 

with Estimated Departure Clearance Time (EDCT) delays. 

• Data Collection and Preparation: The methodology began with the 

collection and preparation of historical weather observations (METAR), 

weather forecasts (TAF), flight schedules, and delay data for O'Hare 

International Airport (ORD) spanning three years. Data cleaning and one-hot 

encoding techniques were applied to transform categorical attributes into a 

machine-readable format, combining all data sources on an hourly basis to 

form the dataset for model training. 

• Model Development: A two-layer stacked Gated Recurrent Unit (GRU) 

neural network, augmented with a three-layer feedforward neural network, 

was proposed. This architecture was chosen for its ability to capture temporal 

dependencies in the data, essential for accurate delay predictions. 

• Training and Validation: The model was trained on data from 2015 to 2017, 

validated on 2018 data, and tested using 2019 data. Performance metrics 

focused on the model's ability to predict the count of incoming EDCT-delayed 

flights accurately. 
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Phase II: A Cost-Aware Approach for Flight Resources Aggregation During Pre-
Disaster Evacuation 

• Objective: To optimize the allocation and utilization of flight resources for 

emergency evacuations, minimizing costs while ensuring efficient passenger 

evacuation. 

• Optimization Framework: The Particle Swarm Optimization (PSO) algorithm 

was selected for its effectiveness in handling complex optimization problems. 

The algorithm was tasked with identifying the most cost-effective flight 

diversions to maximize evacuation efficiency from Daytona Beach 

International Airport (DAB). 

• Simulation and Evaluation: A simulated environment was created to model 

the evacuation scenario, incorporating constraints such as airport operational 

capacity and the availability of flights. The PSO algorithm's performance was 

evaluated based on its ability to select optimal flights for evacuation within the 

specified constraints. 

Phase III: Neural-Network Accelerated Genetic Algorithm for Optimal Evacuation 
Flight Planning 

• Objective: To leverage a genetic algorithm (GA) accelerated by a neural 

network (NN) for developing efficient evacuation flight plans that minimally 

impact routine airspace operations. 

• Hybrid Model Development: This phase introduced a novel hybrid model 

combining GA for optimization and NN for rapid convergence. The NN was 

employed to predict potential solutions' fitness, thereby accelerating the GA's 

search for optimal evacuation plans. 

• Training and Implementation: The NN model was trained on data from 

various airports to ensure generalizability. The hybrid model was then applied 

to generate evacuation flight plans, demonstrating improved efficiency and 

reduced computational overhead compared to traditional GA. 
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3. PHASE-I EXPLAINABLE MACHINE LEARNING FOR FLIGHT DELAY 
PREDICTION 

3.1 Introduction 

With continuously growing air traffic, airspace administrators and airspace users are facing the 

increasingly complex challenge of safely maximizing the throughput of busy airports. The 

United States National Airspace System (NAS) is considered one of the busiest and most 

complex airspace systems in the world (MITRE, 2023). Many airports and sectors in the NAS 

already operate at their capacity limits (Airoldo, 2022). Weather is a common factor that slows 

down airport operations which temporarily decreases airport capacity (Dhal, et al., 2014). A 

majority of the NAS delays are caused by weather (Bureau of Transportation Statistics, 2023) 

Anticipating airport capacity constraints such as weather before they occur can help airlines 

and airports to alleviate the airport capacity problem at an operational level by allowing Air 

Traffic Management (ATM) experts as well as airline and airport staff to plan ahead and 

optimize the use of the available, albeit reduced, capacity. 

Airport capacity is generally quantified as the Airport Arrival Rate (AAR) and Airport 

Departure Rate (ADR) or the sum of both values (Dhal, et al., 2014). The AAR and ADR are 

set by Air Traffic Control (ATC) as target values for the maximum number of incoming and 

outgoing flights per hour. Both AAR and ADR are adjusted based on traffic and weather 

conditions. When the demand for incoming and outgoing flights exceeds the available airport 

capacity, ATC uses Traffic Management Initiatives (TMIs) to reduce traffic to the target AAR. 

ATC then asks incoming flights to delay their departure by assigning an Expected Departure 

Clearance Time (EDCT) to each of these flights (Federal Aviation Administration, 2009). 

While AAR/ADR and EDCT delays are related, AAR/ADR is a target value that can involve 

human bias whereas the number of EDCT delays directly measures the capacity constraint’s 

impact. 

There is limited research on machine learning and deep learning approaches to predict 

weather-related airport capacity constraints. Nevertheless, there are related studies on 
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predicting airport runway configurations, AAR, and ADR (Wang, 2019; Smith, 2008; Avery 

& Balakrishnan, 2015). Other researchers have developed simple models to predict an airport’s 

EDCTs. However, a limited number of features, with respect to wind and weather forecast, has 

been used (Misra et al., 2022). 

The goal of this part of work is to develop a predictive model to forecast airport capacity 

constraints. Based on a comprehensive feature set, this research can build the foundation for 

various decision-support tools used by ATM, airlines, and airports. Pertinent attributes of such 

a feature set include observations and forecasts of general weather phenomena, visibility, 

winds, temperatures, cloud types, cloud ceilings, as well as the current and expected traffic 

situation at the airport. These attributes are found in METeorological Aerodrome Reports 

(METARs), Terminal Aerodrome Forecasts (TAFs), and available traffic data. Possible target 

variables include the number of EDCT-delayed flights, the ratio of EDCT-delayed flights and 

scheduled flights, and the average EDCT-delay minutes. When deployed at airlines, the model 

shall provide ATM experts and airline employees concerned with the day-to-day operations 

with an early outlook on possible capacity constraints. 

The research will demonstrate that commonly used aviation data can be used to create 

an early warning tool or decision support tool for ATM, airline, and airport staff to plan for 

weather-related airport capacity problems. This has the potential to reduce service delays by 

facilitating proactive planning of individual flights and traffic flows through the use of the 

expected capacity constraint predictions. 

To achieve this goal, a comprehensive feature set will be prepared. This feature set 

includes weather observations (METAR), weather forecasts (TAF), and air traffic data on an 

hourly basis. The data will be prepared for one airport, Chicago O’Hare International Airport 

(ORD). It will consist of at least four years of observations. A Recurrent Neural Network 

(RNN) with Gated Recurrent Units (GRU) will be implemented to predict the number of EDCT 

flights per hour (or a similar metric). In addition, an explainable Artificial Intelligence (AI) 

method, occlusion sensitivity (Rojat, Puget, & Diaz-Rodriguez, 2021) is used to describe the 

behavior of the model. 
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3.2 Data Collection and Preparation 

Four different data sources are used to prepare a data set for the airport capacity constraint 

model. These data sources are the FAA Aviation System Performance Metrics (ASPM) 

Delayed Flights report (Federal Aviation Administration, 2023a), the FAA ASPM EDCT 

report (Federal Aviation Administration, 2023b), METARs, and TAFs. All four data sources 

are publicly available. These data sources were selected for this project because of their real-

time availability to airlines. While airlines already apply both METARs and TAFs in real-time, 

the data points from both ASPM reports can be approximated using FAA-provided streaming 

interfaces. The data covers the period from January 2015 to December 2019 on an hourly basis 

at Chicago O’Hare International Airport (ORD). This section gives an overview of the four 

different data sources followed by a description of applied data preparation steps. 

The Delayed Flights report data has two categories, Airport and City Pair Analysis. The 

Airport Analysis category documents information on the “number and percentage of flight 

departures and arrivals delayed 15 or more minutes for a selected airport or group of airports” 

while the City Pair Analysis documents information on the “number and percentage of flight 

departures and arrivals delayed 15 or more minutes, between two selected airports or groups 

of airports” and each compares their respective data to the actual schedule and flight plan times 

(Federal Aviation Administration, 2023a & 2023c). It is important to note that this report uses 

the Airport Analysis data and that the ASPM Airport Analysis module tracks information for 

only 77 airports in the U.S. NAS. These airports are referred to as the ASPM 77 (Federal 

Aviation Administration, 2023d). The data features of the Delayed Flights Airport Analysis 

report are described in Table I. 

The ASPM Airport Analysis EDCT report provides information on the number of flight 

arrivals and departures with EDCT delays at given airports that instruct the aircraft to “remain 

at the departure airport until a specified time is issued when weather, congestion, or other 

problems in route or at the arrival airport will impede flights from arriving at the destination 

airport as originally planned” (Federal Aviation Administration, 2023b). When EDCTs are 

issued, they are accompanied by traffic management initiatives that the FAA Command Center 

implements (Federal Aviation Administration, 2023b). This report uses multiple features from 
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the EDCT report. These are described in Table I. Some of the key features from the EDCT 

data that determine the success of the prediction model investigated by this report include the 

Arrivals with EDCT which provides information on the total number of arrival flights with 

EDCT departure delay which is computed by comparing the EDCT Wheels Off Time to the 

Flight Plan Wheels Off Time (Federal Aviation Administration, 2023e). A key factor to note 

about this feature is that there are times when a “flight may have been issued an EDCT and not 

accumulated any EDCT delay if the Flight Plan Wheels Off time was after the EDCT Wheels 

Off time” (Federal Aviation Administration, 2023e). For example, if a Flight Plan Wheels Off 

time is planned for 1600 UTC and the EDCT Wheels Off time is issued for 1530 UTC since 

the EDCT Wheels Off time occurs before the EDCT Wheels Off time, the flight does not 

accrue an EDCT delay, therefore, making an issued EDCT Wheels Off time like this obsolete. 

However, if the EDCT Wheels Off time is scheduled after the Flight Plan Wheels Off time, an 

EDCT delay is accrued. Furthermore, the Arrivals For Metric Computation feature is another 

key attribute of the EDCT report data. It calculates metrics in ASPM that are aggregated based 

on the scheduled arrival time if available or the flight plan arrival time if the scheduled arrival 

time is not available. In addition, the Arrivals For Metrics Computation feature only includes 

flight information for itinerant flights to or from one of the ASPM 77 Airports or operated by 

one of the ASPM Carriers at any airport with flight plans or actual arrival and departure times. 

The Average EDCT for All Arrivals is also another important feature that provides information 

on the average EDCT delay at the departure airport for all the arrivals at any of the ASPM 77 

airports. Finally, the Average EDCT for Arrivals Where EDCT greater than 0 is another key 

feature in the prediction model that documents the average EDCT delay in minutes at the 

departure airport for flights arriving with an EDCT delay. 

A METAR is an aviation routine weather report that includes the type of report, 

“[station] identifier, time of observation, wind, visibility, Runway Visual Range (RVR), 

present weather phenomena, sky conditions, temperature, dewpoint, and altimeter setting” for 

a given aerodrome (Federal Aviation Administration, 2022). A METAR’s format has two 

major sections, the body which has a maximum of eleven groups, and the remarks which 

consist of two categories: the first is Automated, Manual, and Plain Language Remark and the 

second is Additive and Maintenance Data (Federal Aviation Administration, 2022). In a 
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METAR, the airport identifier follows the International Civil Aviation Organization (ICAO) 

format to identify the airport that the METAR has been issued for, the time observation is in 

Coordinated Universal Time (UTC) time and includes the date and time that the METAR 

report is issued: the first two digits report the day of the month, followed by the hour and then 

the minutes, the wind category has the first three digits indicating the wind direction in degrees 

followed by two or three digits indicating wind velocity in knots, the visibility group is a 

measure of the atmosphere’s opacity and uses Statue Miles (SM) to measure surface visibility, 

the RVR provides the runway and horizontal distance in Feet (FT) that a pilot can see down 

that runway, and lastly, the present weather group provides the current weather conditions at 

the given airport such as precipitation, sky conditions, etc. METARS are primarily issued by 

the FAAs automated weather observing systems and are routinely updated at the top of every 

hour hence they are at times referred to as ”hourly” weather reports (Federal Aviation 

Administration, 2023f). The main target audience for METARs includes pilots, ATC, and 

meteorologists. Figure 4 is an image that provides a visual representation of the general layout 

of a METAR and what each of the categories corresponds to with respect to the aerodrome and 

its current weather. 

Figure 4. Image showing the Coding Format 

of a METAR obtained from the Aviation 

Weather Handbook (Federal Aviation 

Administration, 2022). 

Figure 5. Example of a TAF for Chicago 

O’Hare International Airport (KORD) 

January 01, 2015, at 1729 Zulu time. 

Different than METARs, TAFs describe weather forecasts for a given airport during a 

specified time within 24 hours, as demonstrated in Figure 5. TAFs issue weather forecasts for 
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active airports in the National Plan of Integrated Airport Systems (NPIAS) “including FAA-

towered airports, Federal contract-towered airports, non-federal towered airports, and non-

towered airports” (Federal Aviation Administration, 2023g). A TAF report includes the 

following elements: the type of report, the ICAO station identifier, the date and time the TAF 

is issued, the validity period date and time of the TAF, and the forecast weather meteorological 

conditions (Glazer, 2023). Since expected weather situations can change during a TAF’s 

validity period, a TAF is split up into multiple forecasts. These forecasts are sometimes also 

referred to as lines in a TAF. Each line has a validity period. For example, FM011600 means 

that the following TAF line is valid from the first day of the month at 1600 UTC and valid 

until the time indicated in the next line break or the end of the TAF’s validity period. To 

combine the four data sources into one data set, first, the ASPM Delayed Flights report and the 

ASPM EDCT report are merged. Both reports are on an hourly level, which allows for them 

to be merged based on matching dates and local time. The date column in both reports is based 

on local time. To allow for merging with METARs and TAFs based on UTC time, the date in 

both columns is converted to a UTC-based date. The result of these operations is a data set 

with delay and EDCT metrics in UTC time. A day-of-week attribute is created to allow the 

model to identify potential fluctuations throughout the week. In a separate step, METARs are 

converted into a tabular format such that every data point in a METAR is placed into a 

dedicated column. Similar operations are performed for the TAFs. A TAF contains several 

forecasts which are also referred to as lines. The forecasts share an identical structure. Each 

new forecast line in a TAF is placed into a new group of columns with each group of columns 

dedicated to the respective forecast line. Characters that are not categorical data but metadata 

such “SM” in the visibility column are removed, and where possible, text strings are converted 

to numerical data. For example, the string ”1 1/2SM” which describes a visibility of 1.5 statute 

miles is converted to the value ”1.5”. Another example of this operation is the string 

“M21/M26” which describes a temperature of -21 degrees and a dew point of -26 degrees. This 

string is transformed into two separate columns for temperature and dew point with numerical 

values -21 and -26, respectively. 
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Both METAR and TAF data are then merged with the ASPM reports such that each 

METAR and TAF is linked to the corresponding hour in which they were published 1. Some 

hours will exhibit multiple METAR and/or TAF publications, resulting in more than one row 

for such hours. Only the latest METAR and TAF are kept in these cases. 

The model is trained to predict EDCTs in the upcoming one hour. Corresponding target 

attributes are created by shifting arrivals_with_edct, arrivals_with_edct_ind, 

avg_edct_for_all_arrivals, and avg_edct_for_arrivals_where_edct_greater_than_0 by one 

hour. This creates, for example columns arrivals_with_edct_1, as possible target variables for 

predicting the number of arrivals in the next one to four hours. The same shifts are applied to 

the number of scheduled departures and scheduled arrivals which can be used as additional 

feature attributes. An overview of the resulting data set can be seen in Table I. 

In addition to these steps, one-hot encoding is applied for categorical attributes. This 

includes the cloud descriptions, such as BKN (broken clouds) and SKC (sky clear), the 

weekday, and distinct types of TAF forecast line breaks. All timestamps are transformed to the 

difference in minutes to the baseline hour timestamp. For instance, a TAF that was published 

between 9 and 10 am UTC with the line break FM011200 would have a validity time of 180 

(minutes) for the particular forecast line. All continuous attributes are standardized to a 

distribution with a mean of 0. The target attribute is scaled to values between 0 and 1. 

The data set covers five years from January 2015 to December 2019 with a total number 

of 43,800 observations. The sizes of the training, testing, and validation set are 60%, 20%, and 

20%, respectively. Consequently, the years 2015, 2016, and 2017 are used for training. The 

year 2018 is used for validation and the year 2019 is used for testing. 

Due to the availability of EDCT data in the feature set, there is a risk that the trained 

model makes a prediction for the next hours of the EDCT values solely based on the current 

EDCT and delay situation. To test the model’s ability to predict the EDCT situation without 

knowledge of EDCTs in prior observations, the model is trained on two different feature sets. 

1 In SQL lingo, this operation would be described as a join of ASPM reports and METAR on airport, year, 

month, day, and hour with a second join of the resulting table and TAF on airport, year, month, day, and hour.  
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The first feature set entails the number of scheduled departures and arrivals as well as 

METAR and TAF attributes. The second feature set entails all features from the first feature 

set and attributes that describe the current traffic and EDCT situation, for example, delayed 

gate arrivals and the number of arrivals with EDCT. 

3.3 Descriptive Data Analysis 

The following section provides a detailed breakdown of the feature sets used to run the model 

predictions with data collected between January 1, 2015, to December 31, 2019. Two feature 

sets were created to train the model: the first feature set includes the schedule and weather data 

while the second includes the schedule, weather, and current traffic situation data. Table I 

below shows the list of features per column that were used and their respective descriptions. 

Each feature set has a total of 8,730 data entries (rows). As for the columns, the first feature 

set has a total of 308 columns and the second has a total of 323 columns. Over the five years, 

a total of 3,950 TAFs were issued with METARs being issued approximately every hour of 

each day. 
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TABLE I. Description of input variables. Metadata that is not part of the feature set is marked in italic. The variables in this table are presented 

in their original form for improved interpretability, while categorical variables that are later encoded using one-hot encoding are denoted with 

an asterisk (*). Variables from TAF lines are marked with the suffix {n} with n being a number between 1 and 10, representing the nth forecast 

in the TAF. Variables with the suffix {m} represent the corresponding value in m hours after the baseline observation, with m being a number 

between 1 and 4. 
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A descriptive data analysis of the collected data with respect to EDCTs was conducted 

to better understand the correlation between features as well as their contribution to the model’s 

predictions. Tables and graphs were applied to provide a visual representation of this analysis. 

To begin with, the total number of EDCT days per year was determined. Figure 6 shows these 

results. It is noted that 2019 had a total of 120 EDCT days which was the highest number for 

all five years. 

Figure 6. Total Number of EDCT Days per Year 
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Figure 7. Average Number of EDCT Figure 8. Average Number of EDCT Arrivals 

Arrivals per Hour by Month from 2015 to per Hour by Day of the Week from 2015 to 

2019 2019 

Figure 9. Average Number of EDCT 

Arrivals per Hour by Scheduled 

Departures from 2015 to 2019 

Figure 10. Average Number of EDCT 

Arrivals per Hour based on Wind Speed 2015 

to 2019 

Figure 7 shows the average number of EDCT arrivals per hour for each month. Per year, June 

consistently had the highest average of approximately 6.8 EDCT arrivals per hour which 

correlates to the fact that it is typically the peak air travel month of the year in the U.S. The 

average number of EDCT arrivals per hour by day of the week was determined to understand 

which day of the week was typically the busiest in terms of EDCT arrivals. Figure 8 shows 

that Mondays had the highest average of more than 3.5 EDCT arrivals per hour. 
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In addition, the average number of EDCT arrivals per hour with respect to the number 

of scheduled departures was also investigated. As expected, a positive correlation can be 

observed. As the number of scheduled departures increases, the average number of EDCT 

arrivals per hour increases as in Figure 9. There were approximately 118 scheduled departures 

with 15 EDCT arrivals per hour. Furthermore, the average number of EDCT arrivals per hour 

based on weather elements such as wind speed (KT), wind direction relative to true north, and 

visibility (SM) was explored. Based on the results, it was observed that wind speed positively 

correlates with the average number of EDCT arrivals. Figure 10 shows that an increase in wind 

speed led to an increase in the average number of EDCT arrivals per hour. At 36 knots, there 

was an average of 65 EDCT arrivals per hour at ORD. 

Given that the runways at airports are built to align with the direction of wind patterns 

specific to an airport and its location, wind direction plays a huge role in how it affects flight 

operations and EDCTs. During landing, headwinds are conducive because they help reduce 

the speed of the aircraft which in turn reduces the landing distance as well as the use of fuel 

when landing. Figure 11 shows the sum of EDCT arrivals per hour with respect to the wind 

direction. The lowest sum of EDCTs per hour occurs at a wind direction of 270 or 280 degrees 

which aligns with the direction of most ORD runaways, as in Figure 12. Figure 13 shows the 

layout of the ORD airport airfield as of 2021. 

While this data analysis was conducted solely based on METARs, i.e., weather 

observations, and the current number of EDCT flights, it demonstrates how different weather 

descriptors can be used to predict airport capacity. To further boost predictability, the data set 

used to train the model contains current weather observations, weather forecasts, schedule data, 

and current delay and EDCT data. 
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Figure 11. Sum of EDCT Arrivals per Figure 12. Average Number of EDCT Arrivals 

Hour as per Wind Direction from 2015 per Hour based on Visibility from 2015 to 2019 

to 2019 

Figure 13. Chicago O’Hare International Airport Airfield Layout as of 2021  

(Airport Operations 101, 2024). 
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 3.4 Base LSTM Model and Performance Analysis 

Pertinent characteristics in time-series data can be described by single observations but also by 

changes in values between multiple observations. For example, sudden changes in weather or 

wind from one hour to the next may have direct implications on airport operations different 

from gradual changes over a longer time. This implies that observations and predictions from 

previous hours can entail crucial information for the next hour’s EDCT prediction. 

To predict EDCTs for the next hours, a multi-layer model is used. First, the input 

consisting of 308 or 323 input variables is passed through a layer of two stacked GRUs. The 

output of the stacked-GRU layer, also referred to as the hidden state, is of dimension 128. The 

values from the hidden state are then passed through three fully-connected layers with output 

dimensions of 64, 32, and 1 for the first, second, and third fully-connected layers, respectively. 

A Rectified Linear Unit (ReLU) is used following every fully-connected layer to convert 

possible negative values to zero. For both the stacked-GRU layer and the fully connected 

layers, a dropout probability of 0.8 is used. This randomly removes 80% of the outputs during 

training to prevent overfitting and allow for a more robust model. Figure 14 is the learning 

curve of the model. It provides the model’s performance on learning the data going through it 

and its ability to make predictions from the given data. To work with the model’s best 

performance, only eight epochs were applied. Although the validation loss graph decreases 

gradually and then begins to increase toward the end of the epoch cycle, the model’s 

performance improves on the training data over time. 

Figure 14. Model Training and Validation Loss 
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Both the ASPM source data sets show that EDCTs and a high number of delays can 

often be observed over the course of several hours. EDCTs are likely to be issued and delays 

are likely to occur in hour h when the airport was already congested in hour h-1. To test the 

model’s ability to predict EDCTs solely based on weather data, two feature sets are created. 

The base feature set only contains TAF and METAR data as well as data on scheduled 

departures and arrivals, i.e., the columns scheduled_departures, scheduled_arrivals, 

scheduled_departures_{m}, and scheduled_arrivals_{m}, (see also Table I). The full feature 

set contains all TAFs, METARs, and describes the current delay and EDCT situation. The 

model is trained and tested on both feature sets to predict the next 1 hours. For each of these 

scenarios, the model is trained on data from 2015 to 2017, validated on data from 2018, and 

tested on data from 2019. 

The results for each of these tests can be seen in Figures 12 and 13. It shows that the 

model performs better when data on current delays and EDCTs is known. However, the results 

also show that the model does predict EDCT trends without knowing the current EDCT or 

delay situation. For example, Figure 11 shows that the model predicted EDCTs during times 

of congestion and predicted no EDCTs for calmer periods. The mean absolute error (MAE) for 

a look-ahead horizon of one hour is 3.78 EDCT-delayed arrivals when working with only 

METAR, TAF, and schedule data. The MAE for the same time horizon is 2.24 when data on 

the current EDCT and delay situation is added to the feature set (see Figure 15 and Figure 16). 

While the time-series graphs show that the model can predict upcoming EDCT 

situations in all tested settings, they also reveal that the model lacks the ability to predict the 

exact number of EDCT-delayed flight arrivals, i.e., the actual severity of the airport capacity 

constraint. While the actual number of EDCT-delayed flights can reach a number higher than 

150, the model’s predictions vary between 0 and a value of around 50. This may be caused by 

the fact that the model is trained using mean-squared error (MSE) as a loss function. The MSE 

penalizes high deviations from the target values, thereby encouraging more cautious 

predictions. Addressing this problem through a custom loss function or other approaches can 

be the focus of future works. 
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Figure 15. Model performance - base feature set, prediction for h+1 

Figure 16. Model performance - full feature set, prediction for h+1  

3.5 Model Explainability Analysis 

XAI models are increasingly being used to build explainability and trust in AI-driven 

decisions. Various techniques and frameworks have been proposed to address the need for 

interpretability in complex time-series tasks. There is currently a diverse range of XAI models 

being applied. A study conducted by Fouladgar et al. evaluated three XAI models which 

included the Local Interpretable Model-Agnostic Explanations (LIME), Integrated Gradient 

(IG), and SmoothGrad (SG) on Convolutional Network Waterfall (Fouladgar, Alirezaie, & 

Främling. 2022). Each of these models is used to explain feature importance in a model. LIME 
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works on the principle of perturbation to generate explanations by approximating a given 

model locally. The input data is perturbed, and the change in the output is observed to 

determine feature importance. IG is gradient-based. It calculates the gradient of the output with 

respect to the input data and integrates the gradient along a path of interest. SG also uses 

gradient. It reduces the noise in a model by averaging the gradients of multiple noisy samples. 

Although these models are not further discussed in this paper, they provide a general idea of 

other XAI options in the field in addition to Bi-LSTMs. 

Single feature occlusion is then investigated to determine the impact that each feature 

in the dataset has when contributing to the EDCT predictions. The feature with the highest 

impact is TAF weather data indicating showers. It has an impact of 0.72 while the feature with 

the least impact is the METAR cloud type with an impact of 0.016. Figure 17 shows a stem 

graph of the single feature impact when occlusion is applied. 

Figure 17. Single Feature Importance 
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Figure 18. Multiple Feature Occlusion Impact 

Multiple feature occlusion is then investigated to determine the impact that features 

with similar characteristics have on the models’ predictions when grouped together. There 

were a total of 27 feature groups and the group with the highest impact was the TAF weather 

data with an impact of 0.47 as seen in Figure 18. 

3.6 Summary of Phase-I 

Or the model demonstrates the capability to predict the timings of EDCT delays, there is room 

for improvement concerning the predicted number of EDCT-delayed flights, i.e., the severity 

of the airport capacity constraint. This problem could be addressed by introducing a loss 

function other than MSE. Alternatively, a two-step approach can be used by first classifying if 

any EDCTs are to be expected in a given hour, and if so, predicting the number of EDCT flight 

delays in a second step. 

In addition, this work assumes that the number of EDCT-delayed arriving flights can 

be used to approximate the severity of airport capacity constraints. It should be noted that not 

all traffic management initiatives assign EDCTs to flights (Federal Aviation Administration., 

2009). More work is needed to incorporate the impact of these traffic management initiatives. 
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Furthermore, METARs and TAFs are data in form of a text string. Various data 

preparation steps are needed to convert this data into a tabular format. In a future version, a 

model could be expected to identify the pertinent features from a text string without relying on 

heavy data preparation. A model that uses text input to predict airport capacity constraints 

could also be trained to work with other textual data that cannot be easily converted into a 

tabular format, for example ATC advisories. Alternatively, other real-time data sources with a 

predefined (tabular) structure can be explored. 

Moreover, as the interpretability of the predictions may increase the trust of decision-

makers in air traffic management, adding explainable AI approaches is expected to boost the 

acceptability of the model and its output. 

In summary, this part of the project research builds a foundation for feature-rich, NN-

based airport capacity constraint prediction. When combined with the above-mentioned 

improvements and implemented for major airports in the NAS, this work can help to contribute 

to better predictability in air traffic management, thereby decreasing overall delay impacts and 

increasing airspace efficiency. 
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4. PHASE-II A COST-AWARE APPROACH FOR FLIGHT RESOURCES 
AGGREGATION DURING PRE-DISASTER EVACUATION 

4.1 Introduction 

In an emergency, such as a hurricane or other natural disaster, logistics become the main 

priority for emergency services. While helping citizens in dangerous situations is important, 

removing as many citizens as possible from the situation itself makes the emergency 

significantly more manageable. As a result, prompt and cost-effective evacuation of civilians 

is vital. In the modern world, air travel is a fast and flexible transportation option when given 

minimal time to prepare (Ahmed & Dey, 2020; Alahi Kawsar, et al., 2019; Guo, Zhang, & Wu, 

2023). 

Historically, air travel tends to be used for either long distance evacuations or 

evacuations from non-natural disasters (Baharnemati & Lim, 2012; Bi et al., 2019). As a result, 

current solutions for evacuation from natural disasters in Florida focus more on sheltering in 

place and evacuation by land or sea. However, in cases of serious disasters, land and sea 

evacuations have historically resulted in serious traffic jams, traffic accidents, and gas and 

supply shortages. These circumstances extend and exacerbate the emergency situation, as well 

as limit the outflow of citizens and inflow of supplies. Although sheltering in place is a 

common emergency strategy for many citizens, in larger and more destructive natural disasters, 

it quickly becomes a detriment instead of a benefit as valuable resources are being used to 

rescue people from compromised shelters. 

Rather than explore the optimization of traffic flow for land evacuations (as many 

current solutions for emergency evacuations do), this paper seeks to optimize the use of air 

travel for such evacuations. Aircraft can be diverted from their scheduled flights and rerouted 

to the evacuation airport for use. The flights to be used in the evacuation must be selected based 

on the cost of diverting the flight and the flight's usefulness (e.g., the number of passengers 

that can be evacuated on the aircraft). Aircraft evacuations also avoid the main difficulties of 

traditional evacuations, such as traffic accidents and jams, while moving large batches of 

citizens faster and farther away from the inclement danger. 
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To optimize this air-based evacuation, this part of the research utilizes a Particle Swarm 

Optimization algorithm to select flights to divert for evacuations from the Daytona Beach 

International Airport (DAB). The algorithm seeks to minimize the cost of diverting aircraft 

from their scheduled flights while evacuating a specified number of passengers without 

overwhelming the airport's operational capacity. 

4.2 Methodology 

A. Data Collection 
Data for this paper was gathered from public databases on the Bureau of Transportation 

Statistics website and the Flight Aware aircraft registration website. Some supplementary 

reference data was gathered from Wikipedia after checking the reliability of the website's cited 

sources. The process of web scraping was employed to gather data from these sources. The 

web scraping involved writing programs in Python using packages such as BeautifulSoup and 

Selenium to automate the extraction of data by navigating the web pages, locating the desired 

content, and retrieving it for analysis. The use of web scraping allowed for systematic and 

efficient retrieval of data from various online sources, ensuring a comprehensive and up-to-

date dataset for this paper. Care was taken to adhere to ethical guidelines and legal 

considerations during the web scraping process, respecting the terms of use of the targeted 

websites. For data that was more difficult to scrape, an available .csv file was directly 

downloaded from the web page. This file would need to be re-downloaded if the data was 

needed in future usages and applications of this research. 

B. Data Preparation 
To preprocess the collected data, some assumptions were made to reduce the number of 

variables and unknowns in the problem. These assumptions can be easily adjusted to alter the 

situation being evaluated in the optimization problem.  

It was assumed that evacuations would take place for seven days leading up to the 

hurricane's arrival. The hurricane referenced here was Hurricane Matthew, which hit Daytona 
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Beach on October 7, 2016. Therefore, the dataset of flights was restricted to flights occurring 

on or between October 1 and October 7, 2016. 

Next, it was assumed that flights for the evacuations would only be diverted from six 

hub airports since these hub airports would more likely be able to handle the cancellation and 

diversion of aircraft. The six airports considered were: ATL (Atlanta, GA), CLT (Charlotte, 

NC), HOU (Houston, TX), IAH (Houston, TX), DFW (Dallas, TX), and DAL (Dallas, TX). 

This assumption allowed the dataset to be further reduced to only include flights originating 

from these six airports. 

It was also assumed that only the legacy airlines (American Airlines, Delta Airlines, 

and United Airlines), Southwest Airlines, and Jet Blue would be able to effectively and 

efficiently handle diversions due to their size. Smaller airlines were not considered since they 

would not be as well equipped to manage the diversion of their aircraft from their scheduled 

flights. Therefore, the dataset was further reduced to only include these five airlines' flights.  

The tail numbers of the aircraft in this reduced dataset were then used to identify the 

type of aircraft used in each flight and how many passengers each aircraft would hold. Any 

aircraft which could not be identified was removed from the dataset. Finally, any aircraft with 

50 or fewer seats was removed from the dataset since smaller aircraft would not be useful in 

mass evacuations and would not be worth the cost of diverting them. This resulted in the final 

dataset used by the Particle Swarm Optimization algorithm to select the optimal flights. This 

final dataset had 10,478 rows with the following quantities as features: day of the month, date, 

airline code, tail number, origin airport, scheduled destination airport, departure time, taxi time 

out, taxi time in, actual elapsed time, air time, distance to DAB, and number of seats.  

To calculate the fuel cost for diverting a flight, distance, fuel cost (per gallon per seat), 

number of seats, and fuel consumption rates (mpg) were used. An average fuel cost over the 

last five years (excluding 2020 due to the biased effect of COVID-19 on the airline industry) 

was found using the Bureau of Transportation Statistics' Airline Fuel Cost and Consumption 

(U.S. Carriers - Scheduled) dataset, and an average fuel consumption rate was determined by 

cross-referencing various sources cited on Wikipedia. Dividing the average value of fuel cost 

by the average fuel consumption gave an average value used as a constant multiplier for all 
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flights investigated. The constant was multiplied by the distance a particular flight would travel 

and the number of seats on the aircraft to obtain the estimated fuel cost of diverting the flight.   

To determine the delay of diverting a flight from its original destination to DAB, the 

average airtime of all flights in the reduced dataset per mile was calculated. This average value 

was multiplied by the distance from the origin to DAB. The delay was calculated by 

multiplying the calculated airtime by two and adding two hours to account for aircraft turnover 

time. 

To estimate the customer compensation payments for the delay caused by the relocation 

of a flight, the individual policies of each airline considered were analyzed to determine under 

which conditions delayed passengers would be given meal or overnight compensations. Meal 

compensation has been estimated at 15 dollars per person, while hotel fees were taken from 

the relative surrounding area of each origin airport. The conditions and costs of passenger 

compensations were used to estimate the cost of diverting any flight more accurately for the 

evacuations. 

C. Particle Swarm Optimization  
The Particle Swarm Optimization is a stochastic algorithm that uses a random initialization of 

particles with a position and velocity in the solution space. The objective function is evaluated 

for each particle based on its current position in the solution space. Afterward, each particle's 

position and velocity is updated as each particle adjusts its position and velocity based on both 

its own historical best location and the historical best position of its neighboring particles. This 

process is repeated until a defined termination criterion is met. 

In this paper, a PSO algorithm, as in Figure 19, was implemented by loading the 

preprocessed data into Python, defining the objective function and constraints of the problem, 

and optimizing the global best position using the Python Pyswarm package. The objective 

function considers the cost of fuel, the number of passengers able to evacuate in the aircraft, 

and the meal and overnight delay compensation given to passengers of delayed flights. The 

problem is constrained by a maximum number of aircraft that can be hosted at DAB at any 

instance and the number of people who need to be evacuated from Daytona Beach. 
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Figure 19. General structure of the Particle Swarm Algorithm 

4.3 Evaluation and Discussion 

A test set was run to validate the proposed algorithm simulating a small evacuation from DAB. 

In this simulation, ten candidate flights are considered by the algorithm, which aims to 

evacuate a total of 1000 people from DAB at a minimum total cost. The algorithm input data 

for the ten candidate flights is shown in Table II. 
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TABLE II: SAMPLE DATA SET USED TO SHOW ALGORITHM RESULTS 

AIRLINE ELAPSED TIME DISTANCE NUMBER SEATS 

AA 

AA 

DL 

DL 

DL 

DL 

DL 

UA 

UA 

WN 

1911.0 416.0 379.0 

 1727.0 416.0 422.0 

1410.0 366.0 189.0 

 2313.0 366.0 222.0 

2.0 366.0 142.0 

 1616.0 366.0 142.0 

904.0 366.0 100.0 

 2305.0 861.0 149.0 

820.0 861.0 191.0 

 1025.0 969.0 149.0 

The algorithm was then allowed to run and gave a result with outputs including airline 

and flight number to identify which flights are considered, the total price to divert the aircraft 

for the evacuation, and a binary value noting whether the algorithm has selected the flight for 

its optimal solution. The solution found for the test simulation is shown in Table III. 

TABLE III: TABLE OF SELECTED AND NON-SELECTED FLIGHTS 

AIRLINE FLIGHT PRICE REDIRECTED 
NUMBER (USD) 

AA N127AA 39914.4608 1 

AA N833AA 44443.0144 1 

DL N3739P 24372.5328 0 

DL N804DN 28628.0544 1 

DL N912DL 18311.6384 0 

DL N932DN 18311.6384 0 

DL N961AT 12895.5200 0 

UA N14242 21220.4608 0 

UA N71411 27202.0672 0 

WN N340LV 34323.1632 0 

The algorithm found that a minimum cost solution to evacuate 1,000 people from DAB 

would require $112,985.52 to be paid to relocate a total of 3 flights. This price will account for 

the delayed passengers’ compensation (meals and lodging) and fuel costs for the aircraft to be 

diverted and used. 
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4.4 Summary of Phase-II 

In our research, PSO algorithm was able to successfully optimize the selection of flights for 

the simulated evacuation, though the number of candidate flights was severely limited in this 

test run. By its nature, the PSO algorithm operates by searching through all combinations of 

candidate flights while searching for an optimum. This results in long computation times if the 

list of candidates gets large; therefore, the algorithm would take a long time to locate a global 

minimum if it is asked to search through the entirety of the dataset of candidate flights. 

Potential future works would include working to reduce the computation time and 

power required to find a global solution and exploring a method of accounting for all the 

available flights rather than a small set, like the test simulation discussed in IV. This could be 

achieved by reducing the dataset to search for solutions for smaller time blocks instead of 

searching a full week of potential flights in a single simulation. Another potential method to 

account for large sets of flight data would be to apportion the data into evenly sized subgroups, 

each placed through the particle swarm algorithm to produce the optimal flights for that 

respective subgroup. Once all the local optimal flights are obtained, a set of data containing 

only the optimal values would be run through the particle swarm algorithm to obtain a true 

minimum expense with the flights needed to meet the constraints. The use of such batch testing 

would allow for several local minima to be discovered independently of each other, narrowing 

the set of potential global solutions for the algorithm to search through. 
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5. PHASE-III NEURAL-NETWORK ACCELERATED GENETIC ALGORITHM FOR 
OPTIMAL EVACUATION FLIGHT PLANNING 

5.1 Introduction 

Emergency situations are an unavoidable phenomenon and their impact on the aviation 

industry cannot be neglected. Every year, many people are forced to move from one place to 

another due to the impact of emergencies, such as fires and hurricanes (Smith and Katz 2013; 

Tri et al., 2020). Hurricanes are the most widespread problem in the southeastern part of 

America where “hurricane season” occurs yearly. During an emergency period, there is mass 

movement of people to safer places, which increases traffic on all methods of transportation 

from roadways to airways. Due to the limited capability of airports to support the landing and 

takeoff of planes, not all evacuated focused aircraft can be used for transporting people. There 

is an essential requirement for integrating a meticulously calibrated and validated traffic 

incident response module into the process of modeling and simulating evacuation scenarios 

(Zhu et al. 2019). 

A well-devised air mobility evacuation plan is characterized by its ability to not only 

sustain ongoing aerospace traffic but also its ability to seamlessly accommodate the surge in 

demand for outgoing flights. However, existing studies commonly formulate evacuation plans 

that utilize an airport’s entire capability, often at the expense of disrupting ongoing air mobility 

This research focuses on efficiently evacuating people without compromising the 

ongoing airport schedule. Specifically, we leverage the selected airport’s existing capabilities 

that is used for military (MIL) and General Aviation (GAV) operations. By temporarily 

redirecting management capabilities from these less critical tasks, we enable evacuation flights 

to seamlessly coexist with regular air traffic. The primary contributions of this study are: 

• We propose a novel approach for creating evacuation plans during emergencies, 

which maximizes the emergency-impacted airport’s outgoing capacity without 

interrupting existing airspace operations. 
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• Enhancement of our model’s efficiency through the integration of the Genetic 

algorithm(GA) with a Neural Network(NN) to reduce the required number of 

iteration towards optimal solution. 

• We evaluate our solution extensively with real flight operation data. 

5.2 Methodology 

A. Problem Formulation 
We analyzed the capabilities of diverse aircraft types at nine major airports in Florida. We also 

analyzed the operation records of diverse types of aircraft, including Air Carrier (AC), Air Taxi 

(AT), GAV, and MIL aircraft. In which an AC is termed as an aircraft with a seating capacity 

exceeding 60 seats. An AT aircraft can accommodate a maximum of 60 seats. GAV 

encompasses all civil aircraft movements involving takeoffs and landings, excluding those 

classified as AC or AT aircraft. Furthermore, MIL aircraft activities, encompassing the full 

spectrum of MIL takeoffs and landings provided Federal Aviation Administration (FAA) and 

the Federal Test Center (FTC). 

We utilize the GAV and MIL capabilities of the airports during evacuation to mitigate 

the impact on regular AC and AT traffic. In the meantime, we want to minimize potential 

delays at the destination airports. To achieve this, we introduced two key metrics: the mean of 

combined capability (c) and its standard deviation (s). The mean of combined capability (c) 

represents the average value of the combined capability of GAV and MIL operations at the 

airports according to historical data. This metric serves as a reference point for evaluating the 

effectiveness of airport capabilities in emergency scenarios. The standard deviation (s) 

measures the extent of variation in the mean value of the combined capability across the 

airports. Mathematically, we aim to derive an evacuation flight schedule in an hourly manner 

that can maximize c and minimize s simultaneously. 
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B. Data Processing 
The dataset used for our study was collected from the FAA data repository, specifically 

focusing on the first two months of 2023. The data was sourced from various datasets to 

comprehensively address our research objectives which are: 

• Traffic Flow Management System Counts (TFMSC 

(https://aspm.faa.gov/tfms/sys/OPSNET.asp): This dataset is derived from the 

Air Traffic Airspace Lab's Traffic Flow Management System. It aids in 

assessing the combined capabilities of the airports which are essential for 

gauging the potential of GAV and MIL operations during evacuation scenarios. 

• Aviation System Performance Metrics (ASPM. 

(https://aspm.faa.gov/apm/sys/AnalysisCP.asp): The ASPM dataset is 

accessible through an online access system provided by the FAA. It delivers 

comprehensive data regarding flights to and from the ASPM airports, as well 

as all flights operated by ASPM carriers. This dataset is integral to performing 

city pair analysis, crucial for determining flight durations and finding the top 

ten destination airports. 

We organized the TFMSC dataset into an hourly basis. We computed two key statistical 

metrics for each hour slot of the day: the mean of combined capability (c) and its corresponding 

standard deviation (s). These metrics provided valuable insights into the average and variability 

of the airports’ incoming flight acceptance capabilities hourly. We also incorporated data from 

an additional 24 airports outside Florida, representing the top ten destinations from the nine 

airports in Florida. In total, we include 33 airports modeling the emergency evacuation 

scenario. 

From these nine Florida airports, we identified a set of 24 unique domestic airports that 

served as the top ten destinations. When ranking these destinations, we prioritized them based 

on the number of flights connecting each destination. Higher flight frequencies resulted in 

higher ranks. Figure 20 displayed the top ten ranked destinations for each of the nine major 

airports in Florida. 
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To facilitate neural network training, an additional data synthesis process was 

introduced. During this procedure, the target airport for which the evacuation strategy was 

being developed was excluded from consideration. Data from all other airports was 

amalgamated, encompassing attributes such as popularity (p), the mean combined capability 

(c), and the standard deviation (s) of c. For each of the top ten destinations, a set of three values 

was recorded, culminating in a total of 30 columns in the dataset. These values were collected 

on an hourly basis, offering a comprehensive temporal perspective. In a subsequent phase, 

supplementary columns were introduced to the dataset. These additional columns were 

designed to include eleven entries for the best fitness score attained and ten entries for 

indicating the sequential selection or non-selection of the top ten destination airports. The 

complete algorithm for synthesizing the data is given in Algorithm 1. 

62 



 

 

 

 

Figure 20: Top ten destination airports from the nine major airports in Florida. 
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C. Genetic Algorithm 
The GA operates by identifying optimal chromosomes from a population pool, employing the 

principles of crossover and mutation over multiple generations. In the context of our specific 

problem, a chromosome is symbolized as a list containing ten elements, with each element 

assigned a value of either 1 or 0. These ten elements correspond to the decision of whether to 

select or reject flights to the top ten destination airports from the evacuating airport. The 

effectiveness of a chromosome is evaluated through a fitness function. This fitness function is 

formulated using the equation specified below: 

FitnessScore = 0.5∗p+0.2∗c−0.3∗s−penalty (1) 

• p is the popularity value of the airport 

• c is the mean of the combined capability 

• s is the standard deviation of the combined capability 

• penalty equals to 1 when choosing more number of flights in destination airports beyond 

the capability of evacuating airport 
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To enhance the effectiveness of our GA, several strategies were incorporated to 

optimize the evacuation strategy selection process. These strategies were fine-tuned to 

prioritize certain factors and balance trade-offs during decision-making. 

• Positive Influence of Popularity and Capability: In the pursuit of creating 

more effective evacuation strategies, the algorithm was configured to place a 

positive emphasis on $p$ and $c$. This incentives the algorithm to prioritize 

airports with higher popularity and greater capabilities to maximize the 

utilization of well-equipped and frequently used airports. 

• Minimization of Standard Deviation: To mitigate potential delays arising 

from disparities in the c across different hours of the day, s was introduced with 

a negative weight which prompts the algorithm to favor airports with lower 

standard deviation values, thus reducing the variability in evacuation efficiency. 

• Penalties for Over Selection: To avoid an unrealistic scenario where the 

algorithm selects too many airports, a penalty mechanism was introduced which 

comes into play when the selection of airports surpasses the combined 

capability of the evacuating airport. By penalizing such instances, the algorithm 

is encouraged to strike a balance between maximizing the fitness score and 

adhering to practical constraints. 

The complete GA implementation, encompassing these strategies, is presented in 

Algorithm 2. 

65 



 

 

 

  

 

 

 

 

 

 

D. Neural Network 
We employed a NN model to accelerate the optimal selection of destination airports for 

evacuation planning. This model is trained using a curated dataset derived from the integration 

of TFMSC and ASPM datasets mentioned in Algorithm 1. The NN model predicts the optimal 

airport selection for evacuation strategies on other airports. By training on the synthesized 

dataset, the model learned patterns and relationships between different attributes, enabling it 

to make accurate predictions of the selection of the destination airports. The overall 

implementation of the NN is given in the Algorithm 3. 

E. Combining Genetic Algorithm and Neural Network 
In this phase, we integrated the GA with the trained NN model to facilitate a quicker 

convergence of the algorithm. We aimed to harness the predictive power of the model to inform 

the initial population for the GA. The process of generating the parent population involved two 

approaches: 

• Approach 1: Randomly inserting the population generated by the model in to 

the population list. 
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• Approach 2: Sorting the population list based on fitness score in descending 

and removing the lower order population with the generated population. 

5.3 Evaluation and Discussion 

This section focuses in evaluating the performance, accuracy, and efficiency of the developed 

methodologies. 

A. Genetic Algorithm 
We used only GA to find the optimal evacuation flight schedules originating from DAB airport. 

The algorithm was initiated with a population size of 15 and executed for 5 generations. The 

population size and number of generations were systematically increased by factors of two and 

five to explore their impact on the algorithm's performance. During this iterative process, it 

was observed that the algorithm exhibited a substantial convergence trend when the population 

size was set to 75 and the number of generations was increased to 25, as in Figure 21. The 

observed convergence trend suggests that a population size of 75 with 25 generations struck a 

balance between exploration and exploitation, leading to optimal results in terms of identifying 

the most effective evacuation flight schedules from the selected airport. 

Figure 21: Fitness Score for various combination of population size and number of 

generation where fs p g represents the fitness score for model using population size of p and 

number of generation g. 
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B. Neural Network 
The NN was trained using the synthesized dataset outlined in Algorithm 1. During training, 

the NN was exposed to varying numbers of epochs, 5, 15, and 25, and it was observed that 

convergence commenced at approximately 25 epochs. Prior to convergence, there was a 

notable performance fluctuation as depicted in Figure 22. 

Figure 22: Fitness Score for various neural networks trained under different number epochs 

where fs n is the model trained for n epochs. 

C. Combination of Genetic Algorithm and Neural Network} 
To demonstrate the effectiveness of the Neural Network-accelerated Genetic algorithm. We 

select suboptimal scenarios for each method individually and merge them to find an optimal 

scenario. Specifically, the GA with a population size of 15 and 5 generations and the NN 

trained for only 5 epochs, respectively. The combined approach, referred to as the "NN-

accelerated GA," leveraged the predictive capabilities of the NN to enhance the parent 

population generation for the GA. The strategy entailed using the NN to produce parent 

candidates, which were then integrated into the parent pool. The GA was then employed to 

refine the parent pool further. Parents were added based on the fitness score, considering the 

NN-generated parents alongside those generated by the GA itself. 
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Figure 23: Fitness Score of different models where fs 15 5 fs 5 R is fitness score for NN-

accelerated GA where fs 15 5 GA model is combined with fs 5 NN model , also the 

population is randomly replaced by population generated by NN and in case of fs 15 5 fs 5 S 

least fit population are replaced by sorting them. 

We compared two methods: random addition of NN-generated parents and the selective 

removal of the least-fit population. In the latter approach, we ranked the entire population pool 

in descending order based on their fitness scores. The least-fit populations were then replaced 

by the parents generated by the NN. The results from this experiment, as depicted in Figure 23 

revealed that the strategy of random addition of parents from the NN yields better outcomes 

than the approach of selectively removing the least-fit populations.  

Figure 24: Number of evacuation flights scheduled by the different models. 
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Figure 24 shows the number of evacuation flights that can be originated on hourly basis 

by models fs_75_25 and fs_15_5_fs_5_R. We found that the prediction of the number of 

flights by both the model is almost identical except in the midnight scenario. The reason might 

be due to the fact the number of flights in the DAB airport in that time duration is very random 

sometimes they have few flights but most of the time number of flights during those time is 

almost none. Figure 25 provided detail about the selection of top ten destination airports by 

our top two models which are fs_75_25 and fs_15_5_fs_5_R. As shown in the figure, we found 

that most of the time airport selection by both are identical. 

Figure 25: Selection of the airports for evacuation by different models 

5.4 Summary of Phase-III 

In this research, we delved into the utilization of GA to develop efficient evacuation plans 

during emergencies. We leverage the non-commercial flight capability of impacted airports to 

ensure that evacuation plans minimally affect routine airspace operation. We proposed a neural 

network accelerated genetic algorithm to derive our solution with smaller computational 

overhead. We found that GA exhibited slower convergence when operated independently with 

higher population pool and generations and that its performance significantly improved when 

assisted with a NN model trained for a mere 5 epochs. This integration yielded comparable 

results in terms of fitness function, flight numbers, and airport selection. This intriguing finding 

underscores the NN's ability to expedite GA's convergence, even when trained on data from 

different airports, displaying its generalization capabilities. 
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As a prospect for future exploration, we are planning to incorporate another NN to predict 

fitness scores. This endeavor aims to ascertain whether the fusion of these two NN models 

could yield even faster convergence rates when combined with our current hybrid model. 
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6. FINDINGS, CONCLUSIONS, RECOMMENDATIONS 

6.1 Findings and Conclusions 

Phase I: Explainable Machine Learning for Flight Delay Prediction 

• Findings: The study introduced a GRU neural network architecture to predict 

weather-related airport capacity constraints, quantified as the number of flights 

arriving with EDCT delays. The model was trained on a comprehensive dataset 

including weather observations, weather forecasts, and flight schedules and 

then inspected using Occlusion Sensitivity method. The analysis demonstrated 

that certain weather conditions, notably misalignment of wind direction with 

runway direction, significantly impact EDCTs. The proposed model reliably 

predicted EDCT situations using the dataset, with potential for improved 

accuracy by incorporating additional data on delays and EDCTs. 

• Conclusions: While the model showed promise in predicting the timing of 

EDCT delays, there's room for enhancement in predicting the exact number of 

delayed flights. The study also highlighted the potential for models that directly 

interpret textual weather data, improving the prediction of airport capacity 

constraints without extensive data preprocessing.  

Phase II: A Cost-Aware Approach for Flight Resources Aggregation During Pre-Disaster 

Evacuation 

• Findings: This phase focused on optimizing the use of air travel for emergency 

evacuations, specifically from natural disasters, using a Particle Swarm 

Optimization algorithm. The algorithm aimed to select flights for diversion to 

evacuation airports, minimizing costs while considering the airport's 

operational capacity. The approach demonstrated success in selecting optimal 

flights for evacuation scenarios, albeit with a limited number of candidate 

flights in the simulation. 

• Conclusions: The PSO algorithm effectively optimized flight selection for 

evacuations, suggesting air travel as a viable and efficient evacuation method. 
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However, the computational intensity of the algorithm poses challenges for 

scalability. Future directions include reducing computation time and exploring 

methods to accommodate larger datasets of available flights, through data 

segmentation or batch testing for more efficient global minimum searches. 

Phase III: Neural-Network Accelerated Genetic Algorithm for Optimal Evacuation Flight 

Planning 

• Findings: The study explored the use of a genetic algorithm (GA), accelerated 

by a neural network (NN), to develop efficient evacuation plans that minimally 

impact routine airspace operations. The hybrid model showed that even a 

briefly trained NN could significantly improve the GA's convergence speed, 

yielding effective evacuation plans without extensive computational resources. 

• Conclusions: The integration of NNs with GAs presents a promising approach 

for optimizing evacuation flight planning, enhancing the efficiency of 

emergency responses in the aviation sector. The study suggests further research 

into the use of additional NN models for predicting fitness scores, potentially 

achieving faster convergence rates and more effective evacuation strategies. 

6.2 Recommendations 

A. For Policy Makers: 

• Invest in Data Infrastructure: Enhance the collection and accessibility of 

real-time weather, flight schedule, and air traffic management data to support 

advanced predictive analytics for air mobility under emergency situations. 

• Encourage Collaboration: Foster partnerships between governmental 

agencies, airlines, and research institutions to share data and insights, 

facilitating the development of more efficient and effective emergency response 

strategies. 

• Support Technological Innovation: Allocate resources towards the research 

and development of AI and machine learning applications in air traffic 
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management, emphasizing the importance of explainable and interpretable 

models to ensure trust and reliability. 

• Update Regulatory Frameworks: Revise current regulations to incorporate 

the use of advanced predictive and optimization tools in emergency planning 

and response, ensuring that these tools can be swiftly and effectively integrated 

into operational practices. 

• Prioritize Training and Preparedness: Implement training programs for 

emergency management personnel on the use of AI and optimization tools in 

evacuation planning and execution, ensuring readiness to deploy these 

technologies in real-world scenarios. 

B. For Airline Operators: 

• Adopt Advanced Predictive Tools: Integrate machine learning models for 

predicting flight delays and airport capacity constraints into operational 

decision-making processes, enhancing the ability to adapt to emergency 

situations. 

• Participate in Data Sharing Initiatives: Engage in industry-wide efforts to 

share relevant data, contributing to the collective ability to respond more 

effectively to emergencies and improve air mobility. 

• Invest in Flexible Resource Management: Develop capabilities for rapid 

reallocation of flight resources during emergencies, utilizing cost-aware 

approaches to minimize disruptions and optimize evacuation efforts. 

• Enhance Customer Communication: Utilize predictive models to provide 

passengers with real-time updates on flight statuses and potential delays, 

improving transparency and customer service during emergency situations. 

• Implement Dynamic Planning Systems: Leverage optimization algorithms to 

adapt flight schedules and routes dynamically in response to emergency 

conditions, maximizing safety and efficiency. 
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C. For Researchers: 

• Focus on Model Generalizability: Work towards developing models that can 

be easily adapted to different airports, emergency scenarios, and data 

conditions, increasing the applicability of research findings across the aviation 

industry. 

• Explore Hybrid Models: Investigate the integration of different AI techniques, 

such as combining genetic algorithms with neural networks, to enhance the 

efficiency and effectiveness of predictive and optimization models. 

• Advance Explainable AI: Prioritize the development of explainable and 

interpretable machine learning models to increase their acceptance among 

decision-makers and stakeholders in air traffic management. 

• Conduct Impact Studies: Evaluate the real-world impact of implementing AI 

and optimization tools in emergency air mobility scenarios, providing evidence-

based recommendations for policy and practice. 

• Engage with Stakeholders: Collaborate closely with airline operators, air 

traffic controllers, and emergency management personnel to ensure that 

research is aligned with operational needs and practical constraints. 
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