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Executive Summary 

Researchers primarily use queuing networks and social force model to simulate the 

movement of people through transportation hubs such as airports. Social force models are 

inspired by molecular dynamics approach where pedestrian particles evolve in time by 

interacting with other pedestrians and objects like walls and chairs. The force-field inputs for 

pedestrian movement models are challenging to estimate because of inherent uncertainties in 

human behavior. A critical consideration in determining human behavior is anxiety, which 

directs attention to threat stimuli. Specifically stated, anxiety is a transient, episodic condition 

engendered by specific situations, such as emergency events. Researchers used a novel approach 

that parameterizes the sources of uncertainty and estimated a range of valid model parameters by 

comparing them with experimental data. 

In this study, the researchers expanded this modeling framework and integrated it with 

queuing-based models to investigate the effect of panic on human behavior in the pedestrian 

dynamics during emergencies. The larger-scale transportation network model determines when 

the transportation system closure is to be implemented. The researchers incorporated this as a 

parameter into our model to investigate the effect of resulting congestion and evaluated the 

transportation policies that need to be followed at transportation hubs (e.g., airports) in the event 

of an emergency. 

Through the Case studies, this study developed a model to investigate the effect of the 

number of exits, the number of passengers, the evacuation policies, and instructions on 

evacuation efficiency. Further, this study also investigated the effects of queue configuration and 

quantified the effectiveness of wall separators in suppressing the disease spread compared to 

rope separators. Results concluded that; 1. A higher number of passengers increased the duration 
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of the evacuation process, 2. Greater number of exit doors reduced the duration of the evacuation 

process, 3. The evacuation time for equal distribution policy significantly took longer than the 

shortest queue policy, 4. Instructions increase the efficiency of evacuation, and 5. Configurations 

with short aisles lower infection spread when rope separators are used. At the end of this paper, 

the limitations of the study and recommendations for future studies are discussed. 

Background Information 

Emergency Evacuation Overview 

Emergencies can easily happen in our lives, with or without warnings. No matter how 

serious an emergency is, we always need to deviate from what we were planning to do initially 

and prioritize the emergency. If an emergency is not dealt with properly, harmful consequences 

may happen. Numerous studies were conducted to manage an emergency, reduce the impact, 

sometimes save people’s lives, and protect property damages. The initial step of any emergency 

studies should include the study of types, causes, and characteristics of emergencies. 

The primary purpose of an emergency is to protect people’s lives and property losses. 

Thus, emergency evacuation is the most critical part of any emergency studies. Through the 

study of previous emergency evacuations, such as Hurricane Katrina, the British Petroleum (BP) 

oil spill and explosion in the Gulf of Mexico, the terrorist attack on September 11, 2001, and 

other aircraft or airport emergency evacuations, a summary of emergency phases and 

evacuations processes in each phase can be concluded. As a result, some limitations of current 

emergency evacuation studies are discovered. 
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1.1 Definition of emergency. The Oxford English Dictionary defines an emergency as “a 

serious, unexpected, and potentially dangerous situation requiring immediate action.” (Lexico 

Dictionaries, n.d.). In other words, emergencies are the unpredictable situations that we are not 

familiar with but forced to deal with immediately. They can be natural, technological, human-

made, intentional, or accidental situations that create intense feelings of stress, anxiety, and 

uncertainty (Van de Walle & Turoff, 2008).  

Examples of such emergencies include fire, flood, airplane crash, traffic accidents, and 

hurricane evacuation. Usually, trained and equipped personnel will have professional response 

plans to emergencies based on the scale and severity. The scale and severity of an emergency 

also depend on the functional changes or suspension of normal operations. Most emergencies, 

such as an emergency landing at an airport, fire, and hurricane can be solved by routine 

emergency response plans and will not affect the regular operation significantly. However, some 

emergencies such as major incidents, natural disasters, terrorist attacks, and catastrophes are 

massive events that are out of the range of pre-defined routine emergency response plans 

(Alexander, 2013). The outcome of these events largely depends on the immediate, sometimes 

intuitive responses from the decision-maker and human involved. 

An emergency like fire can happen as a result of cumulative processes. In this case, a fire 

hazard can exist for an extended period. This hazard will not lead to a fire emergency unless it 

passes a threshold. An emergency can also be a result of a sudden threat. For example, a terrorist 

attack can happen suddenly without any previous clues (Alexander, 2013). Understanding the 

characteristics of such events is of the utmost importance for human decision-makers to 

effectively dealing with these situations. 
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For these emergencies, no matter where it happened or how it occurred, some common 

characteristics are involved, understanding these factors will enable us to develop a policy to 

guide the evacuation process effectively. In the next section, these major characteristics are 

reviewed in detail. 

1.2 Main characteristics of Emergencies. The significant characteristics associated with 

emergencies are 1. Stake can be high, threats to lives, 2. Impact can be very short or long, 3. 

Time pressure, 4. Uncertainty and unpredictable surroundings, 5. Fast-changing, dangerous, or 

life-threating environment. 6. Complexity, 7. Unclear situations, 8. Unavailable, incomplete or 

inaccurate information, 9. Stress, 10. Panic or panic behavior, 11. Crowd behavior, and 12. 

Damage can be light or significant. 

Emergencies can lead to severe consequences if it is not appropriately managed and 

timely. Usually, an emergency can happen in our lives instantly and change our daily routine. 

Negative psychological feelings can easily develop due to the conflicting, incomplete, or missing 

information; inefficiency in decision-making; and intense time pressure. Decisions such as 

wayfinding need to be done in a very short-term deadline while processing the increased amount 

of information quickly. Depending on the types of emergency, time available for evacuees to 

process information and making decisions can be very short or not too short. An emergency can 

involve many people; an interpersonal relationship of evacuees becomes significantly essential 

when the emergencies are urgent and life-threatening (Purser & Bensilum, 2001). Most 

emergencies involve human beings and their intelligence, behavior, emotion, and previous 

experience can directly impact emergencies. Therefore, inappropriate human behavior can 

worsen the situation. 
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1.3 Causes of Emergencies. Emergencies can be caused by 1. Natural disasters such as 

floods, hurricanes, tornadoes, and fires. 2. Technological disasters such as airplane crash, boat 

collision, and bus accidents. 3. Hazardous materials releases such as toxic gas releases, chemical 

spills, radiological accidents, and explosions. 4. Terrorist attacks. 5. Pandemics. 6. Civil 

disturbances. 7. Workplace violence resulting in bodily harm and trauma, and so forth (Fagel, 

Krill, & Lawrence, 2013; United States Department of Labor, n.d.).  

Disasters always lead to emergencies, but not all emergencies are disasters (Alexander, 

2013). Disasters and terrorist attacks usually lead to emergencies that require an urgent response, 

such as evacuation. A disastrous event often causes human, material, or environmental losses and 

overwhelms local capacity such as overloading on the traffic system, and local shelters (Guha-

Sapir, Hoyois, & Below, 2016). A disaster is unforeseen and happens suddenly; therefore, it 

leads to emergencies (Pine, 2009).  

There are three generic categories of disaster, which are natural, technological, and 

human-made disasters (Guha-Sapir et al., 2016; Neria, Nandi, & Galea, 2008). According to the 

Center for Research on the Epidemiology of Disasters (CRED), which is an international non-

profit institution focused on researching natural and human-made disasters worldwide, natural 

disaster includes earthquake, volcanic activity, flood, landslide, wave action, storm, extreme 

temperature, fog, drought, glacial lake outburst, wildfire, animal accidents, epidemic, and extra-

terrestrial impact (Guha-Sapir et al., 2016). Technological disaster is the result of a failure of 

technical systems or mechanical design problems, for example, an airplane crash, boat collision, 

and bus accident (Cassidy, 2002). 
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In the year 2015, 376 reported natural disasters caused the deaths of 22,765 people 

worldwide. The damages were up to USD 70.3 billion. The United States (U.S.) is one of the top 

five countries impacted by natural disasters in the last decade. In the year 2015, 28 disasters 

caused USD 21.28 billion in damages in the U.S. (Guha-Sapir et al., 2016). 

To deal with a disastrous situation or even to survive under such circumstances, humans 

are required to make quick decisions and act upon it promptly. When evacuees are not able to 

obtain enough information, negative feels such as anxiety, stress, and fear can occur 

immediately. Nonadaptive behavior such as panic behavior or crowd behavior sometimes is 

observed in evacuating crowds. The disaster itself may not cause fatal accidents. However, 

human behavior under emergency can lead to severe consequences such as injuries or deaths 

caused by stampeding, pushing, knocking, and trampling. 

1.4 Examples of emergencies. Hurricane Katrina hit the Gulf of Mexico from central 

Florida and then made landfall in Louisiana and hit Mississippi in August 2005. Hurricane 

Katrina is, by far, one of the costliest hurricanes in the United States (E. S. Blake, Landsea, & 

Gibney, 2011; Fagel et al., 2013). In 2009, the Louisiana Department of Health published the 

statistics of deaths caused by Hurricane Katrina. The study identified approximately 986 to 1440 

deaths of Louisiana residents directly caused by Hurricane Katrina (Brunkard, Namulanda, & 

Ratard, 2008). Although many kinds of research were conducted, there was no accurate storm-

related death total, including all the impacted states. The property damage was up to USD 108 

billion (E. S. Blake et al., 2011). 

Within five hours of the landfall in the Gulf Coast areas (Alabama, Louisiana, and 

Mississippi), Hurricane Katrina had destroyed approximately 90,000 square miles of land. 
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Hundreds of thousands of people were evacuated (Dass-Brailsford, 2010). A few months before 

Hurricane Katrina, the Louisiana Department of Transportation and Development (LaDOTD) 

and the Louisiana State Police (LSP) facilitated emergency evacuation plans of southeast 

Louisiana, including the City of New Orleans. These two federal departments coordinated the 

transportation system to reduce traffic congestion and delay during the evacuations in the 

hurricane seasons. As a result, it was estimated that over one million people were evacuated 

using the highway system before Hurricane Katrina (Wolshon & McArdle, 2009). However, 

although the residents were notified to evacuate before the landfall, the scale and severity of 

Hurricane Katrina had caused massive loss of lives and damage to the city’s infrastructures. 

Hurricane Katrina was a massive evacuation case that involved a large number of 

evacuees within a relatively long period than other types of emergencies. The British Petroleum 

(BP) oil spill and explosion in the Gulf of Mexico in April 2010 is another type of evacuation 

that required an urgent response within a matter of minutes but involving fewer people than 

natural disasters such as Hurricane Katrina. The BP oil spill was one of the most massive 

ecological disasters in the U.S. (Perrow, 2011). It was a human-generated disaster and led to 

long-term environmental damage (Mitsch, 2010). An explosion at the Deepwater Horizon oil 

platform had caused fatality of 11 workers (Shultz, Walsh, Garfin, Wilson, & Neria, 2015). 

Immediately, the surviving workers started to evacuate the rig. Two lifeboats first evacuated, but 

11 workers were left behind. Later, a life raft was launched, and seven more workers were 

evacuated. The remaining four workers jumped into the water and survived. Human factors 

played an essential role in this urgent evacuation: the workers had a high level of coordination to 

help each other escape during the evacuation. They were familiar with the surrounding 

environment; thus, they were able to choose the fastest route and alternative routes or exits. The 
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equipment also provided necessary information such as pressure and fire warning to the 

evacuees. Their knowledge and experience helped them to leave the rig safely (Skogdalen, 

Khorsandi, & Vinnem, 2012).  

In the aviation industry, aircraft evacuations occur due to various kinds of emergencies. 

For example, in October 2016, an American Airlines Boeing 767’s right engine caught on fire 

during takeoff and made an emergency evacuation on a runway at Chicago O’Hare International 

Airport. In total, 161 passengers and nine crewmembers evacuated via slides, and 20 people 

received different levels of injuries (Hradecky, 2016). A United Bombardier CRJ-700 had an 

emergency evacuation on the runway at Denver International Airport due to left engine fire in 

July 2017. In total, 59 passengers and four crewmembers evacuated via aircraft stairs, and no 

injuries were reported (Hradecky, 2017a). On July 11, 2017, a Delta Airbus A320 made an 

emergency landing at Daytona Beach International Airport because of the cracked windshield 

after hail strike (Sandoval, 2017). In total, 132 people on board were evacuated safely 

(Hradecky, 2017b). The Federal Aviation Administration (FAA) adopted a 90 seconds aircraft 

evacuation rule for airworthiness certification (Federal Aviation Administration [FAA], 2017). 

This “90s rule” is required for the manufacturers and the airlines that the airplane needs to be 

fully evacuated within 90 seconds, with its maximum seating capacity and less than half exits 

available. Numerous studies were conducted in response to 90 seconds rule to simulate aircraft 

evacuation to increase evacuation efficiency so that the passengers could survive an aircraft 

accident (Miyoshi, Nakayasu, Ueno & Patterson, 2012). 

Aircraft evacuation usually is conducted in a manner under the guidance of 

crewmembers, unless under severe conditions such as a crew-fatal crash in which passengers 
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would need to self-evacuate. Another type of common evacuation situation in the aviation 

industry is airport evacuation when an emergency occurs. Airport evacuation often involves 

additional factors such as diverse populations of evacuees and more complicated and 

unpredictable factors. Although airport evacuation is similar to building evacuation at certain 

circumstances, there are still some unique factors associated with airport evacuation that need to 

be considered when planning for emergency evacuations, including human factors and policy 

factors. Airport evacuations also happen more often than aircraft evacuations for a variety of 

reasons. During the April 4, 2010, Baja California earthquake which shook the Mexico–United 

States border at southern California over a minute (Steinhauer, 2010), San Diego International 

Airport (SAN) Terminal 2 was evacuated after a water leak and potential natural gas leak (Hall 

& Baker, 2010). Based on the closest historical data, SAN had 1,361,558 passengers in April 

2011, with approximately 45,000 passengers per operational day in April (San Diego 

International Airport, 2012). The evacuation in the major terminal, Terminal 2, was estimated to 

affect thousands of passengers according to the historical data potentially. On November 11, 

2016, SAN was evacuated for about 15 minutes due to a faulty smoke alarm near Gates 3-10 at 

Terminal 1. Passengers were observed to be frustrated and rushed to catch the flight because 

thousands of passengers had to go back through security lines after the situation was cleared 

(Zabala & Garske, 2016). 

On January 4, 2010, Newark Liberty International Airport (EWR) Terminal C was 

evacuated after a man walked the wrong way past a security checkpoint without security 

screening until noticed by another passenger (Barron, 2010). On January 16, 2010, John F. 

Kennedy International Airport Terminal 8 was evacuated because a passenger opened a restricted 
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door and walked through the door. In both cases, the airports had to evacuate the secure areas, 

which resulted in massive delays (“JFK Terminal is Evacuated,” 2010). 

On October 24, 2016, London City Airport (LCY) was evacuated due to chemical 

concerns. Around 500 passengers were evacuated after several people became ill and were 

coughing violently because of chlorobenzylidene (CS) gas, which is used for crowd control 

(“London City Airport Declared Safe” 2016). 

In addition to natural disasters, technological disasters, and hazardous materials releases, 

terrorist attacks become an urgent issue in contemporary security for modern aviation. On 

January 6, 2017, a gun shooting happened at Fort Lauderdale-Hollywood International Airport 

(FLL) at the Terminal 2 baggage claim area in the lower level. The shooter killed five passengers 

and wounded six passengers. Dozens of travelers were injured during the evacuation of Terminal 

2. Miscommunication regarding a possible second shooter in Terminal 1 led to another mass

evacuation and airport closure for inspection (Gomez, 2017; Vielma, 2017). 

The terrorist attack on September 11, 2001, resulted in a large-scale evacuation of mixed-

ability populations in and near the two collapsed high-rise World Trade Center (WTC) buildings. 

The massive explosions and fires urged the residents in lower Manhattan to evacuate their 

houses, and the subsequent damages disrupted their lives for months and even years (Farfel et al., 

2008). The Department of Homeland Security was established in 2002 in response to the 9/11 

attack (Fagel et al., 2013). 

The impact on the WTC Tower one occurred at 8:46:30 a.m., the next impact on the 

WTC Tower two occurred at 9:02:59 a.m. Firefighters and trained personnel were assisting the 

evacuation after impact. Full-scale building evacuation on Tower one began immediately after 
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the first impact. Although no evacuation order was issued for Tower two after the first impact, 

some occupants in Tower two decided to evacuate. The 16 minutes gap between the impacts on 

Tower one and Tower two contributed to the higher survival rate in Tower two. Within one hour, 

the WTC Tower two collapsed at 9:58:59 a.m., later WTC Tower one collapsed at 10:28:22 a.m. 

(Averill et al., 2005; Shields, Boyce & McConnell, 2009). The National Institute of Standards 

and Technology (NIST) estimated the total populations inside both towers when the first impact 

happened was 17,400 ± 1,180 occupants, and 2,146 to 2,163 perished (Averill et al., 2005).  

1.5 Emergency phases and evacuation processes. Vorst (2010) suggested measuring 

psychological parameters based on John Leach’s Dynamic Disaster Model. This disaster model 

describes a disaster in three phases and five stages. In each phase and stage, people will have 

different psychological reactions; therefore, different human behavior can be observed. The first 

phase is the pre-impact phase, which contains the threat stage and warning stage. The second 

phase is the impact phase. The third phase is a post-impact phase, which includes the recoil 

stage, rescue stage, and post-traumatic stage. Evacuation can happen in all three phases and four 

stages except for the post-traumatic stage in the third phase.  

Similarly, Alexander (2013) suggested that an emergency has five phases: 1. initial 

emergency, 2. consolidation, 3. recovery, 4. investigation, and 5. stand down. In the first phase, 

external help and assistance usually are not available. Evacuees need to evaluate the situation 

and respond based on the information available. This first phase is when the pre-evacuation and 

self-evacuation happens. In the second phase, external forces will come to the affected area and 

start working, including guiding the evacuation, rescuing people who are trapped or injured, 

controlling the scene, and eliminating the emergency event (Alexander, 2013). In this phase, 
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guided evacuation happens. The third, fourth, and fifth phases involve restoring the situation, 

collecting information, and returning to normality. This paper simulated human behavior and 

evacuees’ psychological response under emergencies; therefore, the researchers focused on the 

human factors in the first two phases, which are the initial emergency phase and consolidation 

phase. Because in these two phases are where pre-evacuation, self-evacuation, and guided 

evacuation is happening. Total evacuation time includes these three evacuation processes.  

There are also many studies that focus on evacuation processes. According to the 

International Organization for Standardization (ISO) technical report ISO/TR13387-8 

(International Organization for Standardization [ISO], 1999), the evacuation process consists of 

pre-movement and movement processes. During the pre-movement process, occupants receive 

warnings such as alarm or cue of fire that urge evacuation. This process has two components, 

which are recognition and response. Recognition time is after an alarm goes off or a signal of fire 

is given before occupants respond to the warnings. During the recognition time, occupants 

remain to do pre-alarm activities (e.g., eating, sleeping, working, and watching TV). This period 

ends as soon as occupants realize the necessity to respond. Response time is after occupants 

realize they need to respond before occupants begin to evacuate. During the response time, 

occupants stop pre-alarm activities and prepare to evacuate (e.g., terminating machinery, 

securing important items that cannot be carried, collecting light and essential belongings, 

gathering family members, investigating the risks, planning escape routes, deciding exits if 

inside a building, and altering others).  

The second process is the movement process. This process is after occupants start to 

evacuate until they have reached a safe place. Movement can occur during the pre-movement 
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process; therefore, the term “movement process” is strictly for occupants that start to evacuate 

towards exits or escape routes to leave the building or reach a safe place (ISO, 1999; Purser & 

Bensilum, 2001). According to Purser & Bensilum (2001), pre-movement time usually 

determines the total evacuation time. If occupants respond slowly in the pre-movement process, 

the difficulty of escaping during the movement process may increase. In a crowded environment 

such as stadium or shopping mall, evacuation time is depending upon the pre-movement time of 

the first occupant who recognizes the emergency to the movement time of the last occupant to 

leave the hazard zone (Purser & Bensilum, 2001). 

In the next section of the literature review, studies related to human behavior change and 

psychological change under emergencies, crowd behavior, panic behavior, and factors affect 

human behavior change are reviewed. In section 2.1., Leach’s Dynamic Disaster Model and 

Alexander’s emergency phases will further be discussed. Based on the reviewed literature, three 

categories of factors that impact human behavior change (i.e., human factors and policy factors) 

are concluded.  

Human Behavior Changes Under Emergency 

Human behavior changes in response to emergencies are complex. Human behavior 

varies as a function of different psychological changes during different emergency phases. These 

human behaviors may negatively or positively affect the efficiency of an emergency evacuation. 

In this section, studies related to human behavior changes and psychological change under 

emergency such as crowd behavior and panic behavior as well as human factors that affect 

human behavior is reviewed.  
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2.1 Human factors and psychological parameters. Vorst (2010) stated that to replicate 

emergencies accurately, human behavior needs to be considered when simulating an evacuation. 

For example, stress can be a negative impact that evacuees develop, and, human behavior, such 

as walking speed, will consequently change.  

Human factors have been studied extensively in the field of disaster psychology. Vorst 

(2010) explained disaster psychology as the psychological changes people experience before or 

during the disaster; therefore, affect human behavior. Vorst (2010) used the evacuation rate 

before and after a hurricane to explain this field of psychology. For example, Vorst (2010) stated 

that before a hurricane makes landfall, 30% of all residents refuse to evacuate; after a hurricane 

makes landfall when the specific emergencies changes to be more urgent, 5% of all residents 

refuse to evacuate. Another example of a behavioral parameter difference is that women need 

20% longer evacuation time than men due to the higher stress level (Vorst, 2010). 

As mentioned in 1.5., Vorst (2010) provided suggestions on how to measure 

psychological parameters based on Leach’s Dynamic Disaster Model. This disaster model 

describes a disaster in three phases and five stages. In each phase and stage, people have 

different psychological reactions; therefore, different human behavior can be observed. The first 

phase is the pre-impact phase, which contains a threat stage and warning stage. The pre-impact 

phase can be very short, for example, in traffic accidents, in which there is typically minimal 

warning time before impact. This phase can also be very long, in the scenario of a volcano 

eruption where there is generally ample time before impact. When the disasters have longer pre-

impact phase are anticipated to happen, the risk of the upcoming event can be underestimated 

because the disaster has not happened yet in the pre-impact phase. Therefore, evacuation 
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progress usually is slow. Typical human behavior in this phase is ignoring or denying the 

emergency and being apathetic to the imminent danger (Vorst, 2010).  

The second phase is the impact phase. In this phase, evacuation is carried out 

immediately because of heavy stress and avoidance of life-threatening events. The length of the 

impact phase depends on the type of the events involved. When the impact phase is relatively 

short, evacuees are often confused and hampered with excessive information and may be upset 

or emotional. Under these time pressures, human behavior becomes reflexive, automatic, and 

mechanical (Vorst, 2010). According to the data stated by Vorst (2010), most of the evacuees 

(more than 75%) show apathetic and nervous behavior during the impact phase. Some people 

(about 15%) are overactive and lose emotional control. Ineffective behavior is commonly seen. 

Only a small portion of the population (about 10%) can remain calm and potentially lead the 

evacuation (Vorst, 2010).  

The third phase is the post-impact phase, which contains a recoil stage, rescue stage, and 

post-traumatic stage. In this phase, the damage of the impact is visible, but evacuees may 

suppress realities, show irrational emotions, or develop emotional disorders. Especially in the 

recoil stage, human behaviors such as inactivity, simple behavior, apathy, and childlike 

dependency on others often can be observed (Vorst, 2010).  

In each phase and stage, human behaviors, as well as evacuees’ emotional and cognitive 

states, are significantly different. Evacuation can happen in all three phases (i.e., pre-impact 

phase, impact phase, and post-impact phase) and four stages (i.e., threat stage, warning stage, 

recoil stage and rescue stage; Vorst, 2010). Evacuation will stop in the last stage of the last 

phase, the post-traumatic stage. In this stage, survivors try to rebuild their lives. No more urgent 

evacuation from the life-threatening event will occur anymore. To represent the entire evacuation 
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process, a comprehensive simulation model should include human behaviors and evacuees’ 

psychological responses during each of the three phases and four stages, except the post-

traumatic stage (Vorst, 2010). 

 The main purpose for Vorst (2010) to introduce Leach’s Dynamic Disaster Model 

was to provide a grouping method of psychological variables so that the psychological behavior 

parameters can be implemented in the evacuation models. The first step of the grouping method 

is based on the evacuees’ characteristics, which could include commitment to ongoing tasks, 

temporary status (i.e., the effects of disease, sleep, alcohol, drugs), personal effectiveness (i.e., 

problem-solving style, achievement motivation), intelligence, preferred moving speed, and so on 

(Abolghasemzadeh, 2013; Cassidy, 2002; Mu et al., 2013; Purser & Bensilum, 2001). The 

inclusion of such parameters in a simulation is scenario-specific. This way, the second step is to 

identify the phase and stage of the emergency. Many previous literatures studied human behavior 

under emergency during the pre-movement process and movement process. Vorst (2010) also 

describes procedures to estimate the psychological behavior parameters such as collecting 

empirical data from national research centers, referring to previous literature, and making smart 

guesses when developing models. Many of these grouping methods and model development 

procedures are discussed later in this review.  

As mentioned in section 1.5, there are other variations in classifying the different phases 

of the emergency in addition to Leach’s Disaster Model. Alexander (2013) described an 

emergency in five phases: 1. initial emergency, 2. consolidation, 3. recovery, 4. investigation, 

and 5. stand down. Evacuation can happen in the first two phases. According to ISO (1999), the 

evacuation phase consists of pre-movement and movement processes. Separating the evacuation 

phase into two processes can help build a simulation model that can quantify human behavior 
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and measure psychological parameters, and therefore, accurately measure evacuation time. In the 

following two sections, previous literature regarding human behavior under emergency is 

reviewed based on the pre-movement and movement processes of evacuation. 

Combining the Dynamic Disaster Model and current comprehensive studies on fire 

evacuation (Knuth, Kehl, Hulse, & Schmidt, 2013; Mu et al., 2013; Purse & Bensilum, 2001), a 

fire scenario is used as an example to demonstrate human behavior change under emergency. 

These behaviors are consistent and transferable across different kinds of emergencies (Vorst, 

2010). It is worthwhile to note that the same theories and concepts can be applied to building 

evacuation, airport evacuation, traffic accident evacuation, natural disaster evacuation, and so 

forth.  

Human behavior in the pre-movement process. Both the pre-impact phase and impact 

phase can be viewed as a pre-movement process. Vorst (2010) stated human behavior such as 

ignoring or denying the emergencies and being apathetic to the imminent danger is common in 

the first pre-impact phase in an emergency. Ineffective behavior is commonly seen in the impact 

phase. Some widely observed human behavior in the pre-movement process involves the 

response to warnings, which is sometimes slow because the event usually is not life threating yet 

to urge people to run for life immediately (Purser & Bensilum, 2001). According to Mu et al. 

(2013), human behavior such as confirming information regarding the fire, extinguishing the fire, 

and alerting other people can be observed in the pre-movement process. Purser & Bensilum 

(2001) observed human behavior such as collecting information about the emergency, collecting 

important belongings, and choosing an optimal exit to escape in the subsequent pre-egress time. 

In Purser’s studies in 1994 and 1998 (as cited in Purser & Bensilum, 2001), the author 

studied a fire evacuation in a department store using video analyses approach. At the time of the 
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fire, the department store had a sales area and a restaurant full of retired people and young 

mothers with children. Behaviors such as warning the staff, shouting at other shoppers, activating 

the fire alarm, calling the fire department, trying to fight the fire, and gathering or waiting for 

other family members to leave was observed in the pre-movement process. For example, a 

retired couple had split up in the restaurant, and the husband searched around the store for his 

wife before he evacuated. Purse & Bensilum (2001) concluded that people need strong cues 

regarding an emergency (e.g., fire, smoke) to recognize the importance of evacuation, cease their 

normal activities, and change their behavior to evacuating. Some emergencies (e.g., fires, 

hurricane, flooding, or the situation in WTC Tower Two after the impact of WTC Tower One) 

may not threaten the occupants initially; however, once the risk or danger become visible, it can 

grow rapidly thus leave a very short period to evacuate. In this case, occupants whose responses 

are delayed for a long period during the pre-movement process may become trapped in a 

dangerous situation. Incident analyses have shown that there is a connection between a delayed 

evacuation and a high number of fire deaths or injuries, particularly in residential and hotel 

buildings (Purser & Bensilum, 2001). Therefore, the process in the pre-movement phase is 

believed to be more decisive to survival than the actual movement process (Kobes et al., 2010). 

Human behavior in the movement process. During the egress time, human behavior 

such as wayfinding, choosing an escape route and alternatives if necessary, and movement 

towards the selected exit is observed (Purser & Bensilum, 2001). Sime (1994; as cited in 

Cassenti, 2018) stated that for evacuees who are not familiar with the environment, wayfinding 

or choosing an escape route usually depends upon the way the evacuees entered the building, and 

other escape routes or emergency exits may be easily overlooked. In Purser’s studies of a fire 

evacuation in a department store in 1994 and 1998 (as cited in Purser & Bensilum, 2001), when 
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the store was utterly smoke-logged, people sought the fastest ways to exit the store, including 

climbing out of the front windows onto a first-floor ledge. Because of the elderly population in 

the restaurant, some families were moving slowly to accommodate their elderly family members, 

although most family members were young and could move quickly.  

2.2 The decision-making process. The above section discussed human behaviors under 

emergencies; however, before human beings act, they first undergo the decision-making process. 

According to Mu et al. (2013), risk perception and decision-making are the two of the most 

critical determinants of human behavior. Evacuation is just one of the behaviors evacuees may 

choose during the pre-movement process of an evacuation. People first will perceive, recall, and 

think about emergencies, which can be viewed as their perceptions of risks. Next, people process 

the information and make decisions before behaving. The output of this process is the actions 

that they execute during an emergency. In this section, literature regarding the decision-making 

process of evacuees, as well as the factors impacting decision-making is reviewed.  

According to Gantt & Gantt (2012), decision-making is a process that individuals use to 

identify a proper response to emergencies. Human behavior under emergency is thus a reflection 

of the human decision-making process (Gwynne, Galea, Lawrence, & Filippidis, 2001). Ozel 

(2001) stated that human behavior under emergency is a decision-making process. There are 

three stages in the decision-making process, which are risk identification, risk assessment, and 

risk reduction. Risk identification involves noting the risk signals, for example, the presence of 

smoke or the increasing sea level during a hurricane. Once the existence of risks is identified, 

individuals make decisions by assessing the likelihood and severity of the risks. After evaluating 
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the risks, individuals determine protective measures to reduce potential dangers (Gantt & Gantt, 

2012).  

To accurately predict and measure the change in human behavior, numerous studies have 

been carried out to determine the factors affecting decision-making. In an evacuation, evacuees 

use environmental cues to process information to promote the selection of an escape route. 

Limited time pressure and stress from physical threats (e.g., fire, smoke, and flood) are some of 

the environmental cues that affect evacuees’ information processing. Different environmental 

cues provide different information for decision-making, ultimately resulting in variations in 

evacuees’ behaviors. As human beings have limited information processing capacity, they tend 

to seek the most beneficial information to optimize decisions (Ben Zur & Breznitz, 1981; as cited 

in Ozel, 2001). Other than environmental cues, people also rely on warning messages from 

governmental authorities, information from others, and previous experience with similar 

scenarios to correctly identify and assess risks, make optimal decisions, and take appropriate 

actions (Gantt & Gantt, 2012).  

Situation Awareness is the primary basis for subsequent decision making and 

performance in the operation of complex and dynamic systems. Endsley (1988) defines Situation 

Awareness as “the perception of the elements in the environment within a volume of time and 

space, the comprehension of their meaning, and the projection of their status in the near future.” 

This formal definition of Situation awareness breaks the idea down into three levels; Level 1 is 

the perception of the elements in a dynamic environment, level 2 is the comprehension of the 

current situation, and level 3 is the projection of future status (Endsley, 1988). Pedestrians with 

good Situation Awareness would know where to evacuate and which is the most efficient way to 
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evacuate by retrieving appropriate information, understand what the information means 

regarding relevant goals, and then by predicting what will happen in the near future. However, 

pedestrians with poor Situation Awareness would easily get lost and often miss the best 

evacuating opportunity by failing to receive the information they need, or even though they 

receive the information but not interpreting it properly. The reason for incorrect interpretation 

could span from; workload, panic, and lack of knowledge. 

Prior experiences also shape evacuee decision-making. According to Abolghasemzadeh 

(2013), in dangerous situations, decision-making is influenced by previous experiences with 

similar cases and psychological state, and physiological abilities determine behavior. Gwynne et 

al. (2001) listed factors such as familiarity with the environment, availability of external cues 

(i.e., warnings, signage, indications, presence of other evacuees or staff), and personal 

experience usually affect evacuees’ decisions. Noticeably, familiarity with the environment and 

personal experience may not promote optimal decision-making. It may also promote a selective 

knowledge of the environment and lead to ignorance of alternative exit routes. Evacuees may try 

to escape from the further exits with which they have had previous experienced, instead of 

moving towards the closest exit of which they may have no prior knowledge. Bode & Codling 

(2013) reported that evacuees preferred to use exit routes they were familiar with; even if the 

route was jammed, evacuees were less able or willing to change their decisions and choose 

alternative routes under the motivational messages given during the experimental evacuations. 

As stated by Turner and Killian (1957; as cited in Gwynne et al., 2001), the familiarity with the 

environment may limit the number of escape options perceived as available. In a pressured 

environment, decision-making can defer to the familiar mode in mind; instead of making rational 

decisions based on environmental cues and feasible methods (Kahnemen & Tversky, 1979). 
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Emergencies demand decision-making under time pressure (Knuth et al., 2013). 

According to Staw, Sandelands, & Dutton (1981), stress, anxiety, and arousal are the immediate 

consequences of threat, and may individuals undergoing such states tend to make decisions based 

on internal hypotheses and dominant cues. The inappropriate dominant response, however, can 

impair decision-making because it results in the neglect of processing unusual information or by 

reinterpreting the unusual information to fit previous experience or their expectations (Rice, 

1990). For example, after the initial attack of WTC Tower One on September 11, 2001, the 

emergency operators did not evacuate the people in WTC Tower Two immediately because they 

did not expect Tower Two to be jeopardized, which had worsened the situation (Van de Walle & 

Turoff, 2008).  

In the worst case, when evacuees start to feel hopeless about escaping from the danger, 

they may enter the highest level of stress for the decision-making phase, which is hypervigilance. 

Aldag (1980) stated that human decision-making pattern could be vigilance, which referred to 

thorough information search and unbiased assimilation of new information. The authors also 

stated that human beings have four defective decision-making patterns. First was adherence to 

the current course of action. Second was adherence to changes to a new course of action. The 

third was defensive avoidance of decision-making, for example, procrastinating, shifting 

responsibility, or bolstering the preferred alternative. Four was hypervigilance, the highest level 

of stress and most extreme form of presence, for example, panic emotion and panic behavior as a 

consequence (Aldag, 1980). Such a high level of stress can lead to errors in decision-making 

under emergency (Ozel, 2001). 
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Successful decision-making depends on the extent to which the information available and 

the time available for processing the information are limited (Heliovaara, Kuusinen, Rinne, 

Korhonen, & Ehtamo, 2012). In an emergency, decision-making is like a choice-between-

gambles task because the time pressure and stress from time constraint and other physical life-

threating cues affect the intention of optimizing decisions (Ben Zur & Breznitz, 1981; as cited in 

Ozel, 2001). When an emergency happens, decision-making requires immediate and effective 

action under the pressures of incomplete, unacceptable and invalid information (Yoon, 

Velasquez, Partridge, & Nof, 2008) during very intense periods with very short-term deadlines. 

Therefore, an adequate amount of information provided to the evacuees can promote decision-

making behavior (Proulx & Sime, 1991; Proulx, 1993). Evacuees continuously review their 

decisions during evacuation by assessing the surroundings and processing additional information 

to determine if they need to change their decisions. However, it is also possible that evacuees 

may attend to the same information differently under stress, and if the stress level becomes 

intense, evacuees may experience distortions in the decision-making capacity to the extent that 

they cannot process all the information or develop false risk perception (Mu et al., 2013; Ozel, 

2001). Evacuees may end up attending to the threatening aspects of the situation and ignoring the 

positive aspects of alternative routes or abandoning decision-making in favor of following group 

behaviors (Ozel, 2001).  

Hasan & Ukkusuri (2011) also pointed out that the complexity of social networks could 

also affect decision-making. During a hurricane evacuation, evacuees need to decide if they are 

going to evacuate, when, where and how to evacuate, and these decisions are determined by risk 

level perception, resource availability, individual characteristics, and social influence. 

Particularly, there are three different levels of social influence, which are individual, household, 
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and community. The researchers investigated the social contagion processes in different 

communities and found faster information flow in the community of individuals living close to 

each other. Also, large social networks act as a single community when the connections among 

communities are strong; in other words, the information flow is faster among these communities. 

Conversely, the community of individuals having fewer connections with others requires 

additional interventions to ensure successful evacuation.  

2.3 Policy factors. The emergency response plan and emergency management strategy of 

the company, as well as rescue response from governmental organizations, can also impact 

human behavior during an evacuation (ISO, 1999). There are numerous policies, regulations, and 

laws existing to deal with the egress and evacuation of individuals (Abolghasemzadeh, 2013). 

For example, the Robert T. Stafford Disaster Relief and Emergency Assistance Act (Stafford 

Act) is a national level regulation for emergency management. It authorizes the delivery of 

federal emergency technical, financial, logistical, and other assistance to states and localities for 

devastating events with the coordination of the Federal Emergency Management Agency 

(FEMA; Association of State and Territorial Health Officials, n.d.). For example, the 

Occupational Safety and Health Administration (OSHA) sets standards and guides evacuation 

policies, evacuation procedures, emergency escape procedures, and route assignments, as well as 

rescue and medical duties for designated workers in workplaces. OSHA indicates that the best 

emergency response plan should include employees’ roles and duties, provide general training, 

and should be reviewed with them regularly (United States Department of Labor, n.d.). OSHA 

standards for evacuation plans and procedures such as Emergency Action Plans, Fire Prevention 

Plans, and standards for fire detection systems, employee alarm systems, fixed extinguishing 

systems and portable fire extinguishers, the Occupational Safety and Health Act are the main 
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guidance for emergency planning (United States Department of Labor, n.d.). Also, general 

policies, standards, procedures such as fire alarm evacuation policy, emergency procedures, 

safety management system, and emergency response plan are enforced by any public venues, 

residential buildings, and so forth. Most of the policies, regulations, and laws are based on 

simplified application rules because of the difficulties of including human factors such as 

demographic factors, physical ability, and behavioral changes in evacuation research 

(Abolghasemzadeh, 2013).  

To achieve an emergency response and recovery effectiveness, first responders such as 

firefighters, police, etc. need to be prepared and trained for various emergencies and decision 

support systems. Often in a large-scale disaster, people who work together have no history of 

doing so and as a result, do not have a basis for trusting in the abilities of others. Human beings 

factor their emotions, decision-making, intelligence, and experience into emergencies, which 

could have a direct impact on the emergency response. Confusion, injury, and property damage 

are mostly caused by disorganized evacuation. Some policies (rules and regulations) are used by 

organizations to coordinate employer and employee actions during workplace emergencies. In 

developing an emergency action plan; it is important to use properly designed policies that 

consider human factors which are critical parameters in policy development and have mutual 

influences on each other (Abolghasemzadeh, 2013).  

The following chart summarized the human factors and policy factors that affect human 

behavior change, as mentioned in this section. 

Human Factors Policy Factors 
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The ability of evacuees (mental & 

physical) (Helbing et al., 2002; Cassidy, 

2002; Purser & Bensilum, 2001) 

Assignment of employees' roles & duties 

under emergency (United States 

Department of Labor, 2001) 

Age (young or old) (Vorst, 2010; Helbing 

et al., 2002; Purser & Bensilum, 2001; Mu 

et al., 2013) 

Construction standard 

(Abolghasemzadeh, 2013; United States 

Department of Labor, 2001) 

Anxiety (Staw et al., 1981; Knuth et al., 

2013) 

Emergency response plan (United States 

Department of Labor, 2001) 

Body size (Schneider & Kirchberger, 

2006; Proulx, 2008) 

Emergency management strategy 

(United States Department of Labor, 

2001) 

Commitment to ongoing tasks (Vorst, 

2010) 

Evacuation drill 

Density (number of evacuees, crowd) 

(Purser & Bensilum, 2001; 

Evacuation policy (United States 

Department of Labor, 2001) 

Distribution of evacuees within the 

building (Purser & Bensilum, 2001; 

Evacuation procedures (United States 

Department of Labor, 2001) 

Educational level (Purser & Bensilum, 

2001; Mu et al., 2013 

Evacuation training for employees 

(United States Department of Labor, 

2001) 

Effectiveness (Problem-solving style, 

achievement motivation) (Cassidy, 2002) 

Evaluation of policies (United States 

Department of Labor, 2001) 
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Engagement in work at the time of 

emergency onset (Purser & Bensilum, 

2001) 

Laws (United States Department of 

Labor, 2001; Abolghasemzadeh, 2013) 

Familiarity with the environment (Vorst, 

2010; Schneider & Kirchberger, 2006; 

Proulx, 2008; Purser & Bensilum, 2001; 

OSHA policy and standards (United 

States Department of Labor, 2001) 

Fear (Knuth et al., 2013) Rescue response from governmental 

organizations 

Gender (Vorst, 2010; Helbing et al., 2002; 

Purser & Bensilum, 2001; Mu et al., 2013 

Regulations (United States Department 

of Labor, 2001) 

Income (Benight & Harper, 2002) Route management guidance 

(Abolghasemzadeh, 2013) 

Individual or group (Ozel, 2001; Pan, 

2006; Aveni, 1977; McPhail, 1991; 

McPhail, 1986; Nilsson & Johansson, 

2009; Cocking et al., 2009; Vorst, 2010; 

Sime, 1983; Yang et al., 2005) 

 

Intelligence (evacuation strategies) (Vorst, 

2010) 

 

Interaction with others (Purser & 

Bensilum, 2001; 

 

Knowledge (Vorst, 2010)  
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Mobility (healthy or disabled) (Vorst, 

2010; Helbing et al., 2002; Purser & 

Bensilum, 2001; Mu et al., 2013 

 

Panic (Miyoshi et al., 2012; Cocking et 

al., 2009; Helbing et al., 2002; Saloma et 

al., 2003; Gantt & Gantt, 2012; 

Abolghasemzadeh, 2013; Hu et al., 2014; 

Zakaria & Yusof , 2016; Schneider, 2008; 

Helbing et al, 2000; Hu et al., 2014) 

 

Personality trait (Xin et al., 2013)  

Preferred moving speed (Schneider & 

Kirchberger, 2006; Proulx, 2008) 

 

Preferred personal space (Schneider & 

Kirchberger, 2006; Proulx, 2008) 

 

Pre-movement time (recognition and 

response to the initial situation) 

 

Pressure (Helbing et al, 2000; Hu et al., 

2014) 

 

Profession (Purser & Bensilum, 2001; Mu 

et al., 2013) 

 

Purpose of the trip (Helbing et al., 2002)  
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Relationship to others in the group (if 

evacuating in the group) 

 

Roles in the group (if evacuating in the 

group) (Helbing et al., 2000) 

 

Relevant experience of evacuation (Vorst, 

2010; Purser & Bensilum, 2001; Mu et al., 

2013 

 

Scenario (Helbing et al., 2002)  

Step length (Schneider & Kirchberger, 

2006; Proulx, 2008) 

 

Stress level  

Surrounding (Helbing et al., 2002)  

Time of the day (Helbing et al., 2002)  

Training of emergency situations  

Temporary status (physical health, sleep, 

alcohol/drug ingestion) (Purser & 

Bensilum, 2001; Mu et al., 2013 

 

The velocity of egress movement (Vorst, 

2010) 

 

 

2.4 Crowd behavior. When people are stuck in a crowded environment, negative 

emotions can lead to serious consequences. Negative psychological reactions such as insecurity, 
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anxiety, worry, or fear experienced during an emergency can lead to distress and worsen a 

threatening or harmful situation (Knuth et al., 2013). Helbing, Farkas, Molnar, & Vicsek (2002) 

described this phenomenon as “herding behavior,” a type of irrational behavior that often leads 

to dangerous overcrowding and impaired escape. Helbing et al. (2002) viewed herding behavior 

as the result of social contagion, which is the transition of experience from individual 

psychology to mass psychology. Conformity in behavior can be observed, in which individuals 

tend to follow others’ actions. According to Pan, Han, Dauber, & Law (2006), people dissolve 

their identities, motivations, and rationalities into a collective mind when being in crowds; 

therefore, behavior including decision-making differs in crowds in comparison to being alone or 

in a small group.  

Further, behaviors like stampeding, pushing, knocking, and trampling on others, are 

commonly seen in crowds. These destructive actions are described as nonadaptive crowd 

behaviors and may result from an individual’s high-stress level, inability to make decisions, 

social identity within a group, loss of personal space, high crowd density, severe external crises 

or emergencies, and high emotional arousal (Pan et al., 2006). Tragically, in human-made, 

technological and natural disasters, many injuries and deaths are the results of nonadaptive 

crowd behaviors or crowd panic rather than the actual cause of the emergency (Pan et al., 2006; 

Shiwakoti & Sarvi, 2013). Given the global trends of mass urbanization, terrorist attacks, natural 

disasters and mega-events, crowd control, especially nonadaptive crown behavior control, is 

becoming increasingly important (Shiwakoti & Sarvi, 2013).  

On a macroscopic level, social structures of interaction also affect human behaviors in 

crowds. Pre-existing structures (e.g., family or friends) and structures formed at the time of 
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emergency (e.g., queues) are the two social structures of interaction to be considered when 

studying crowd behavior (Tucker, Schweingruber, & McPhail, 1999). Previous studies have 

demonstrated that pre-existing social structures of interaction play a significant role in human 

behavior in crowds (Aveni, 1977; McPhail, 1991; McPhail & Wohlstein, 1986), specifically, 

people who come together to a location as a group also tend to move together, orient toward each 

other, and leave the location together. The closer the relationship among individuals is within a 

group, the more likely it is that they will behave as a single entity. Nilsson & Johansson (2009) 

also suggested that social structures of interaction increase with decreasing distance between 

people. Family, friends, or colleagues tend to influence evacuees more than groups formed by 

strangers. This behavior could potentially slow down the flow of the crowd if a large group with 

a strong relationship between people try to move together or move slowly to wait or look for 

other group members (Pan et al., 2006). Researches have also supported that the evacuation time 

generally increases as the density of the pedestrian group travel increases (Cheng, Reddy, 

Fookes, & Yarlagadda, 2014; Lu, Chan, Wang, & Wang, 2017; Zhao, Sun, Yao, Cui & Zhang, 

2017).  

According to Cocking, Drury, and Reicher’s (2009) study of social attachment model in 

crowd behavior, in times of emergency, people normally display affiliative behaviors. Affiliative 

behaviors include moving from unfamiliar situations towards familiar people and places. When 

people need to escape from an urgent situation immediately, the time they spend to seek familiar 

people or move towards familiar place could slow down the evacuation process. After the 

reunion with the familiar group, the chance of individual escape is decreased. The larger the 

group one is in; the longer people take to evacuate. In other words, social attachment model 

delays egress.  
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Vorst (2010) stated that in evacuations, most evacuees will refuse to evacuate without 

their families or will not be able to evacuate without help from their families. Sime (1983) also 

concluded that groups of individuals who have a very close relationship with would exhibit 

group evacuation behavior at great personal risk. Highly attached group first search for other 

group members before attempting to exit. For instance, evacuees would search for their family 

members before exiting, although the situation could be very dangerous. A parent would refuse 

to leave a burning building without his/her child. Sime’s study in 1983 showed that some 

evacuees that were not together with their families when an emergency occurred would still find 

each other and were grouped at their exit. Family is the closest relationship, so that they are more 

likely to stay together. Close friends or colleagues somewhat less and casual acquaintances (e.g., 

hotel guests) were unlikely to stay together if not necessary (Sime, 1983). 

Other than the social structures of interaction that affects evacuees’ decision-making to 

move as a group, evacuees sometimes experience the phenomenon called going with the crowd 

when they abandon their thinking and adopt actions by following others (Yang, Zhao, Li, & 

Fang, 2005). For example, when the visibility is very low due to smoke in a fire, evacuees who 

are prone to the phenomenon of going with the crowd may be easily affected by other evacuees 

and follow the crowd movement. Although following the crowd is not always harmful, doing so 

irrationally can reduce the efficiency of using exits, lead to wrong route choices, and result in 

jamming. Sometimes evacuees follow the crowd movement due to limited information (Sime, 

1983). For example, evacuees may crowd together in hopes of finding an exit due to limited 

visibility; in this case, following other evacuees in front of them may lead to moving towards an 

exit safely or unsafely (Sime, 1983). 
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2.5 Panic behavior. Panic-related emotions and panic behavior also influence decision-

making and consequent human behavior changes. Armfield (2006) found that the risk level of 

disasters affects the severity and distribution of panic. Cocking et al. (2009) believed social 

attachment model of crowd behavior is a better description of human behavior under 

emergencies than a panic model. Under panic situations, people prefer to move towards the 

desired walking direction, even if the direction they are heading to is jammed. People prefer not 

to take detours or move opposite to desired walking direction (Helbing et al., 2002). 

Saloma, Perez, Tapang, Lim, & Palmes-Saloma (2003) studied the dynamics of escape 

panic in mice as an analog to the escape panic of human evacuees. Saloma et al. (2003) 

concluded that human panic behavior was influenced by the architecture of the space to which 

they are confined. The experiment showed that exit with larger and wider door resulted in a 

higher escape rate. However, more exit number did not result in a higher escape rate. It is 

because mice are (also known as) allelomimetic, therefore they all tried to escape from one exit 

door. Herding prevented the full utilization of the two exit doors in the experiment. Pedestrians 

are not allelomimetic, thus, the second result does not apply to human evacuation (Saloma et al., 

2003). Gantt & Gantt (2012) identified environmental and situational cues that may generate and 

facilitate panic behavior: 1. Perception of an urgent and immediate threat to him/herself and/or 

loved ones, 2. The belief that escape from the emergencies is possible, however, the escape 

routes are becoming inaccessible and time to escape is rapidly decreasing, and 3. Feelings of 

helplessness, especially when others are not willing or not able to help.  

Panic-related emotions, which can influence decision-making behavior and therefore, 

actions, can spread to others easily. Because of the ethical difficulties associated with measuring 
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panic, the consequent human behaviors are thusly, somewhat unpredictable (Abolghasemzadeh, 

2013; Hu, Sheu, & Xiao, 2014). According to Zakaria & Yusof (2016), previous studies equated 

panic with fear and anxiety because it was believed that these three conditions would transform 

into the same emotion eventually. Anxiety refers to vigilance regarding a possible threat, 

evaluating whether the situations are certain or uncertain, and attempting to survive amid a 

threat. Fear is similar to anxiety, but with greater intensity. Panic is a more intense extension of 

the fear and arises when an individual is overwhelmed by physical and mental feelings, such as 

in a sudden life-threatening threat. The human body will turn to an optimum state for survival 

when panic emotion arises (Zakaria & Yusof, 2016). 

Panic occurs when fear becomes the dominant emotional motive or dominant 

psychological entity of a group. Panic is the internal state of human beings under collective 

phenomena (Keating, 1982; Schneider, 2008). Schneider (2008) concluded that strong fear 

disables an individual’s conscious and planned behavior, reduces rational behavioral patterns, 

and increases instinct-guided behavior and rigidity. When an individual is exposed to great 

danger, the usual conscious personality is replaced by the unconscious personality that produces 

irrational actions unless there is a presence of a strong positive social (e.g., a leader) influence.  

In addition to fear, according to Schneider (2008), the bodily sensation of physical 

pressure caused by contact with other bodies confined in space also has the potential to cause 

panic. Under emergencies, aggressive human behavior may happen due to the competition for 

resources like space or escape opportunity. If the pressure is not managed properly, panic 

behavior, which is associated with being thoughtless, instinctive, and rigid, can easily worsen 

emergencies and claim lives. Schneider (2008) also indicated that crowding is another factor that 

leads to fear.  



 

 Multi-scale models for transportation systems under emergency 41 

Panic behavior can lead to a faster-is-slower movement trend, in which individuals 

attempt to move faster but cause slower flow through a bottleneck in the exit route (Helbing, 

Farkas, & Vicsek, 2000; Hu et al., 2014). The harder the evacuees push towards an exit, the more 

pressure and interpersonal friction forces will occur in the crowd. In a crowded environment, 

physical pressure, fear, and anxiety, as well as panic develop quickly. Evacuees sometimes tend 

to develop blind activism and start pushing, and interactions among evacuees become physical. 

Increased physical interactions can easily cause evacuees to fall or to be injured; become 

obstacles on the escape route and slow down the evacuation process. The bottleneck usually is 

the resulting clogging, arching, and the jammed crowd builds up in front of the exit. 

Unavoidably, moving, or passing a bottleneck frequently becomes uncoordinated (Helbing et al., 

2000). Panic stampede is a kind of collective behavior that may cause the death of people who 

are either crushed or trampled by others.  

In contrast to the literature reviewed above, other studies have suggested that egocentric, 

adverse or non-adaptive panic behavior is not necessarily common during emergencies (Aguirre, 

2005; S. J. Blake, Galea, Westeng, & Dixon, 2004; Bohannon 2005; Cocking et al., 2009; 

Mawson 2005) and some studies have critiqued the overuse of the term “panic” when describing 

behaviors during disasters. Cocking et al. (2009) conducted two interview-based studies on two 

groups of survivors from different emergencies and found that most evacuees denied that panic 

or non-adaptive behaviors occurred; instead, evacuees reporting coordinated and humane 

treatment towards others at the time of egress. The authors indicated that not enough evidence 

could be used to support the occurrence of mass panic in crowds; instead, the findings reflected a 

genuine sense of common identity that develops as an emergency unfolds. S. J. Blake et al.’s 

(2004) study of human behavior of evacuees in the WTC Towers One and Two during the 9/11 
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attack showed that during the pre-evacuation phase, only 0.8% of the evacuees were noted to 

exhibit egocentric or irrational behaviors. S. J. Blake et al. (2004) concluded after conducting a 

qualitative research analysis of the database developed by the Fire Safety Engineering Group 

(FSEG) of the University of Greenwich. This database contains most human behavior records 

during the WTC evacuation. The data was collected from the literature published in the public 

domain including books, journals, and the electronic media; survivor accounts printed in 

newspapers and newspaper web sites, interviews in the electronic media, survivor web sites and 

books.  

2.6 Leadership. Leadership is a factor that had been addressed in the evacuation studies. 

The proportion of leaders in the overall population size was investigated to influence the 

evacuation efficiencies. Ma, Yuen, and Lee (2016) researched that a smaller percentage of 

leaders in large size of the crowd and a larger percentage of leaders in a small size of crowd tend 

to achieve higher satisfactory guidance for evacuees. However, they also suggested that 

leadership may not always improve the evacuation. Instead, it can affect the evacuation in a 

negative way when the achieved visibility range of a group of evacuees of the environment was 

high enough (Ma et al., 2015). Dyer et al. (2008) conducted several real-life experiments to test 

the effects of the number of leaders at an emergency on the group dynamics. They found that just 

one leader would be capable of guiding a whole group to a destination without obvious signaling 

or verbal communication.  

The number of leaders was also considered in different scenarios regarding the number of 

exits. Hou, Liu, Pan, and Wang (2014) used a social force evacuation model to demonstrate how 

emergency leadership could influence an evacuation. To maximize the efficiency in an 
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emergency, they suggested to match the number of leaders with the number of exits and make 

each leader head to different exits in case of an emergency. From the research, they suggested 

that the evacuation process was tested not to be significantly faster when the number of leaders 

was higher than the number of exits.  

Identified guiders, who were known by the evacuees as a leader, were tested to have 

more conductive instructions on evacuees than unidentified guiders. As for the guidance given 

by the leaders, Cao, Song, & Lv (2016) supported that dynamic guidance acts more effectively 

than static guidance. Dynamic guidance is when the leaders move around the environment, while 

the static guidance is when the leaders keep staying at the same spot during the evacuation 

process.  

In addition to the number of leaders in an evacuation, the position of the leaders was 

found significant in the evacuation process (Hou et al., 2014). In terms of the distribution of the 

leaders, leaders in a uniform distribution were suggested to make a more positive effect in 

evacuation than leaders in other distributions by covering the largest area and the number of 

evacuees (Cao et al., 2016). In contrast, Hou et al. (2014) suggested that the center distribution is 

more effective than the other distributions. The four types of distributions are shown below in 

Figure 1. 
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Figure 1. The black circles represent guiders’ positions in the room. (a) Random 

distribution, (b) center distribution, (3) uniform distribution, (4) exit distribution., by Cao, Song, 

and Lv, 2016. 

Previous Studies and Simulations 

As previously mentioned, emergencies could impair individuals’ lives and health. 

Therefore, collecting, studying, and analyzing various emergencies would be an optimal 

approach to prepare for emergencies. Due to emergencies have specialties, which are 

unpredictability and abruptness, data measurement of human behavior changes are generally 

difficult to collect. As a result, an experiment of emergencies is a suitable strategy for gathering 

these missing yet necessary data. 

3.1 Studies with human participants. A fire accident is one of the most common 

emergencies in daily life. Fire accident can extremely endanger people’ life and can occur 

everywhere at any time. The U.S. Fire Administration (USFA) reported a total of 1,298,000 fires 
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that had happened in 2014 (U.S. Fire Administration, n.d.). These fire accidents caused 3,275 

deaths, 15,775 injuries, and total loss of USD 11.6 billion (U.S. Fire Administration, n.d.). To 

prevent people from unnecessary injuries and life loss in similar emergencies, researchers had to 

understand people’s reactions throughout an entire emergency process.  

To investigate how the spatial factor can influence human, researchers had experimented 

fire emergency evacuation in certain narrow configurations, such as in an airplane cabin. In 

1991, for instance, an experimental study of how fast passengers could be evacuated from a 

McDonnell Douglas MD-11 when an emergency like fire situation was carried out (Gow & 

Clark, 2006). The result of the study showed that 421 participants spent a total of 132 seconds to 

evacuate from the airplane, but 28 of them were injured in the simulation (Gow & Clark, 2006). 

On March 26th, 2006, another airplane manufacturer, Airbus, did an evacuation test for its aircraft 

A380-800, which has a maximum capacity of 853 passengers and 20 crew members (“A380 

successful evacuation trial”, 2006). The simulation test only spent 78 seconds to evacuate all the 

873 individuals on board (“A380 successful evacuation trial”, 2006). Despite one of the 

participants fractured the leg, and another 32 participants were suffered minor injuries during the 

evacuation, the result was entirely successful as well as undeniably under FAA’s 90 seconds 

aircraft evacuation rules (Gow & Clark, 2006; “A380 successful evacuation trial”, 2006).  

Participants, nevertheless, could be injured easily, even in fully prepared emergency 

simulations (Marcus, 1994). To ensure participants’ safety, any simulation studies that involve 

human participants must be initially approved by the Institutional Review Board (IRB) nowadays 

(Office for Human Research Protections, 2016; Penslar, 1933). According to Title 45 Code of 

Federal Regulations (CFR) Part 46, IRB is a committee that has been formally designated to 
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approve, monitor, and review biomedical and behavioral research with human participants in 

research (Office for Human Research Protections, 2016). It means that the IRB conducts forms 

of risk-benefit analysis to determine whether human participants should join the research studies 

or simulations (Privitera, 2014). As a result, the IRB would bring inconvenience for simulation 

studies with hazardous situations. 

3.2 Studies with animals. To better study emergencies while being approved by IRB, 

numerous studies began to use animals in emergency experimental studies rather than human 

participants. In medical simulation studies of clinical trials, researchers regularly use mice 

instead of human beings. This is due to the high similarity of both biology and sequence between 

human and mouse (Battey, Jordan, Cox, & Dove, 1999; Wasserman, Palumbo, Thompson, 

Fickett, & Lawrence, 2000). Therefore, mice became a primary animal species in various 

simulation studies (Battey et al., 1999).  

As early as the 1970s, there had already been studies used mice in emergency 

experiments (Shiwakoti & Sarvi, 2013). For example, Saloma et al. (2013) studied how the mice 

are evacuating with different width exits to replicate panic conditions during the evacuation. This 

study demonstrated that the width of the exit and the mice body sizes had power-law distribution 

relationships (Saloma et al., 2013). Moreover, Lin et al. (2016) did an emergency evacuation 

study by using mice to investigate the faster-is-slow effect. The study used different smoke 

concentrations to stimulate a varying degree of panic to the mice, and its result indicated that the 

mice were more eager to escape and spent longer evacuation time when the smoke density was 

increased (Lin et al., 2016). 

Other researchers used other species of animal for similar evacuation studies. Shiwakoti, 
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Sarvi, Rose, & Burd (2011), for instance, observed and studied Argentine ants’ movement 

patterns in a series of experiments. They found that the ants’ movement patterns were affected by 

the layout or the geometrical structures in the escaping areas (Shiwakoti et al., 2011). Soria, 

Josens, & Parisi (2012) similarly used ants to conduct an experimental evacuation study. 

However, the study result was not efficient to prove the faster-is-slower effect at the end of the 

experimental test (Soria et al., 2012). This is because the ants did not display selfish evacuation 

behavior during the experiment (Soria et al., 2012). Further analysis of the Soria et al.’s 

experimental data, Parisi, Soria, & Josens (2015) pointed out the ants had important differences 

that they were inadvisable for representing human behaviors. As a result, ants were not suitable 

creatures for replicating human behaviors, especially under emergency conditions. 

Although the experimental method of substituting human participants with animals was 

beneficial for studying emergency situations, it also had many deficiencies. The deficiencies 

could summarize as animals behaved differently as human participants in the case of 

emergencies. As a result, computerized simulation models had become a popular method to 

investigate emergency situations. 

3.3 Studies with simulations. Computer-based simulation is a method for studying and 

researching different scenarios in a real-world system. It is achieved by numerical evaluation of 

using software designed to simulate system operations or features. From a practical viewpoint, a 

computer-based simulation is a process of designing and creating a simulation model of a real or 

proposed system. With the continuous progress of science and technology, computer-based 

simulation has become a popular method that substituted experiments and applied in different 

research areas. This is because of computer-based simulations have the flexibility to deal with 
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various scenarios. It means that researchers not only can use computer simulation to study simple 

systems but also can use it to study complicated systems. By conducting, simulating, and 

analyzing corresponded computer-based simulations, researchers could have a better 

understanding of an entire process or principle in a given set of research conditions. 

Other advantages of using computer-based simulation were the significant improvement 

in safety, performance, and reduction in costs. For instance, Miyoshi et al. (2012) used the 

computer-based simulation, which was developed by the Microsoft Visual Basic, to investigate 

whether passengers’ emotion affects evacuation efficiency from an airplane. The study used the 

Garuda Indonesia Airways accident happened at Japan’s Fukuoka airport in June 1996 as a test 

object (Miyoshi et al., 2012). To be more realistic, the study simulated a DC-10-30 aircraft 

model, which was exactly the same as the actual airplane model in the accident (Miyoshi et al., 

2012). The result of the study directly indicated that the passengers’ emotion would significantly 

influence evacuation flow to the exits (Miyoshi et al., 2012). Also, the results indirectly implied 

that the passengers’ emotion might lead to panic, which was another factor to delay evacuation 

time (Miyoshi et al., 2012). Compared with the A380 experimental evacuation mentioned 

previously, the computer simulation clearly demonstrated its powerful abilities, specifically in 

the aspects of safety, performance, and cost. 

The power of computer-based simulation would become more significant when 

simulating sophisticated conditions. As mentioned earlier, actual emergencies are unpredictable, 

and they can appear randomly. However, computer-based simulation can simulate these 

uncontrollable or random conditions during a study. Shi, Ren, & Chen (2009), for instance, used 

computer-based simulation to study agent-based evacuation under large public buildings and fire 
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conditions. During the research, researchers used the computer-based simulation simultaneously 

to build and run several models, including physical systems dynamical model, spatial 

environment model, and agent decision model (Shi et al., 2009). To randomly simulate fire 

locations and situations, as well as arbitrarily distribute the population in the designed area, they 

applied the random function when during the simulation (Shi et al., 2009). The final result of the 

study determined that the quantity and width of exit were an essential factor which affected an 

evacuation process (Shi et al., 2009). Undoubtedly, the random, or the stochastic ability of the 

computer-based simulation made the simulation scenario closer to actual emergencies.  

Concisely, a real evacuation scenario or experiment is dangerous, expensive, and arduous 

to replicate. Because of these reasons, a computer-based simulation is the best alternative tool for 

researchers. Researchers can use simulations to study and prepare a specific emergency with 

special emergency conditions. More importantly, the simulations can be safely reproduced. Even 

the necessary procedures and principles of implementing models are relatively similar among all 

the simulation applications, but different simulation systems still have particular capabilities. In 

the next section, some commonly used simulation systems, and their abilities are reviewed. 

General Purpose Simulation System (GPSS) and the airEXODUS. In the 1970s, the 

General Purpose Simulation System (GPSS) mode was one of the first computer-based aircraft 

evacuation simulation models that appeared in the open literature (Snow, Carroll, & Allgood, 

1970). Due to the limitations of computer technologies at that time, this model had limited 

capabilities. In the 1990s, the Graphical User Interface first appeared in simulation software to 

present aircraft design. For example, the airEXODUS software was developed for aircraft 

certification purposes. AirEXODUS software had considered interactions among people, 
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hazards, and structure in the evacuation process (Galea, Finney, Dixon, Siddiqui, & Cooney, 

2006). This simulation system and model had abilities to predict the total evacuation time under 

certification scenarios for both narrow-body and wide-body aircraft. Moreover, it could provide a 

total estimated evacuation time within an average of 5.3% or 3.8-sec variation (Galea et al., 

2006). Because the computer technology was limited in both hardware and software, and the 

realistic accident data was difficult to obtain, validating simulations for the evacuation of real 

aircraft accidents was extraordinarily challenging at that time. 

AvatarSim. Under emergencies, panic could lead to nonadaptive behaviors, such as 

pushing each other (Helbing & Molnar, 1995). Particularly, at narrow exits, panic behaviors 

could increase evacuation time (Sharma, Singh, & Prakash, 2008; Helbing & Molnar, 1995). 

AvatarSim had the function to imitate evacuees’ stress, anger, and panic behaviors. Also, it had a 

mixture of techniques to model various evacuation scenarios and conditions. Sharma et al. 

(2008) used AvatarSim to study passengers’ emotion and panic behaviors during aircraft 

evacuations. Through the study, they used AvatarSim to incorporate fuzzy behavior characters of 

passengers and crew, social forces model for passenger movement speed, and geometric models 

for aircraft configuration and simulation construction (Sharma et al., 2008). By observing and 

comparing the results, they found that passengers were in a highly panicked situation when the 

evacuation process was delayed or evacuation time was increased (Sharma et al., 2008).  

AvatarSim and airEXODUS represented two instances of the application of simulation to 

investigate the certification scenarios as well as the recreation of real emergency evacuations. 

Although both of them had been widely used to simulate evacuation in airplane configurations, 

they still had unique abilities to investigate particular elements in different emergency conditions 
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and scenarios. 

buildingEXODUS. buildingEXODUS is a computer-based simulation software for 

studying evacuation simulation, pedestrian dynamics, and pedestrian circulation analysis. For 

example, it could be applied to incorporate and validate the empirical crawling data (Muhdi, 

Gwynne, & Davis, 2009). Also, it has highly sophisticated functions to simulate complex 

models. Therefore, it can change the traditional engineering analysis and produce realistic 

human-human, human-fire, and human-structure interaction models. Gwynne et al. (2001) used 

the buildingEXODUS software to present the interaction relationships of people’s decisions with 

fire conditions (Gwynne et al., 2001). In this study, the results identified that fire emergency with 

smoke conditions would reduce people’s evacuation speed and increase evacuation time. 

Especially when the smoke density caused people to use the crawling posture to escape, the 

evacuation time would significantly increase (Gwynne et al., 2001). Later, they tried to use the 

same software, the buildingEXODUS, to validate the Stapelfeldt and Milburn House evacuation 

data. The original purpose of the study was to certify and investigate a range of factors, including 

occupant drive, occupant location, and exit flow capacity (Gwynne, Galea, Owen, Lawrence, & 

Filippidis, 2005). Unfortunately, the final simulation outcomes were not sufficient to verify all 

the study assumptions or factors (Gwynne et al., 2005). 

AIEva. AIEva is another evacuation system that can simulate evacuation with fire 

scenarios. Designers can use the core functions, which includes fire information database, core 

analysis module, rule reasoning mechanism, graphics platform, individual person movement 

speed and fire conditions in the structure, to estimate and analyze the total evacuation time. This 

system had been widely used for the study of evacuation model in large public buildings under 
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fire conditions (Shi et al., 2009). The Beijing Municipal Science & Technology Committee 

(BMSTC) of China, moreover, used this system for the “Project for Crucial Research on 

Gymnasiums and Stadiums for the 2008 Beijing Olympic Games”.  

AnyLogic. AnyLogic is one of the most powerful simulation software. The software 

was developed by the AnyLogic Company to investigate discrete events and agent-based system 

dynamics. AnyLogic can use a graphical modeling language and Java language to build models. 

Additionally, it supports the most common simulation methodologies, such as system dynamics 

and agent-based modeling. Purdue University used this software to assist the Illinois-Indiana-

Wisconsin Regional Catastrophic Planning Team for the evacuation planning and building 

resilience in a major city (Kirby, Dietz, Matson, Pekny, & Wojtalewicz, 2015). Other 

organizations and companies, such as the National Aeronautics and Space Administration 

(NASA), Rolls-Royce, and FedEx, also use the system to build their simulation models for 

different projects (AnyLogic, 2017). 

ARENA. ARENA, developed by Rockwell Automation, has been widely used in various 

industries as an operational simulation software (Kelton, Sawdowski, & Swets, 2010). It was 

written in SIMAN language with functions to adopt Visual Basic and C++ code, so it provided 

flexibilities to people who had limited knowledge in programming (Kelton et al., 2010). 

Additionally, it is an event-driven simulation system. Dorton and Liu (2015) had used the 

software conducted a simulation model for the study about the effects of baggage volume and 

alarm rate on an airport security checkpoint. 

3.4 Modeling and simulating pedestrian movement. Movement of passengers within 

an aircraft is a special case of a more general problem of pedestrian movement. This problem has 
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been addressed using several approaches such as particle dynamics or social force models 

(Helbing et al., 1995; Helbing et al., 2000), models based on cellular automata (Burstedde, 

Klauck, Schadschneider, & Zittartz, 2001), fluid flow models (Henderson, 1971), and queuing 

based models (Rahman, Ghani, Kamil, Mustafa, & Chowdhury, 2013). Social force models have 

specific advantages for studying passenger movement and contacts in airplanes. Each passenger 

is modeled individually and moves continuously; this enables individual trajectory evolution and 

estimation of the contacts between pedestrians.  

Social force models of pedestrian movement are essentially based on molecular 

dynamics. In molecular dynamics, atoms are treated as Newtonian particles with forces between 

atoms described by interatomic potentials (Allen, 1989). Social force models extend this concept 

to pedestrian movement. Here the forces are a measure of internal motivations of individual 

pedestrians to move towards their destination in the presence of obstructions like other 

pedestrians and objects (e.g., chairs). Social force models have been applied to crowd 

simulations situations in panic (Helbing et al., 2000), traffic dynamics (Treiber, Hennecke, & 

Helbing, 1999), evacuation (Wei-Guo, Yan-Fei, Bing-Hong, & Wei-Cheng, 2006) and animal 

herding (Li & Jiang, 2014). Algorithmic developments have included generation of force fields 

using visual analysis of crowd flows (Mehran, Oyama, & Shah, 2009), explicit collision 

prediction (Zanlungo, Ikeda, & Kanda, 2011), and collision avoidance (Lämmel, & Plaue, 2014). 

Member of Current group Namilae has used pedestrian dynamics described by the social force 

model in a multiscale model to study the spread of epidemics during air travel (Namilae, 

Derjany, Mubayi, Scotch, & Srinivasan, 2017a; Namilae, Srinivasan, Mubayi, Scotch, & Pahle, 

2017b). The social force model was discussed in more detail below because it is an important 

part of the future work plan of this study. 
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From a Newtonian mechanics perspective, Helbing and Molnar (1995) developed a 

microscopic particle-based social force approach to mimic the behavior of foot-travelers in their 

milieu of locomotion. Their principle reflects the influence of the surrounding on the internal 

motivation of a pedestrian to reach his designated terminus. Founded on Newton’s second law, 

repulsive and attractive forces are summated and equated to the acceleration to reach the desired 

velocity. The tendency to avoid collision with other individuals in high-density crowds and 

immobile obstacles in the walking path is represented by the repulsive term, although there are 

no physically subjected forces on the pedestrian itself. However, repulsive forces inhibit the 

walker’s motion at proximity with an obstruction. 

On the other hand, guided by his intention, a pedestrian self-propels to his targeted 

destination or one of the exits either individually or collectively by joining a formed group of 

walkers. A fluctuation term is added to the equality to account for the stochastic deviation in the 

path. Also, the alteration of free navigation speed between one individual and another is taken 

into consideration. The theoretical model is validated using computer simulations. Bi-directional, 

counter-crossing Pedestrians are modeled in the first case along a hallway, then at a single exit 

door. Lane formation between successive pedestrians in the same direction is noticed, enabling 

the pedestrian in the rear to move more freely along the way cleared by the forward individual. 

In addition, the crowd accumulates in an arc shape space and clogs the exit. 

In continuation of their work achieved in 1995, Helbing et al. propose a theoretical model 

to simulate the comportment of people on a certain closed site under a life-threatening escape 

panic encounter. Since their previous model only applies for regular everyday condition, a 

modification of the repulsive forces is required to fit the current case study. In contrast to normal 
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situation, pedestrians do not stay apart within a critical radius. Instead, they are allowed to 

collide, resulting in additional shear and pushing forces during their motion. A real-life 

experiment is impossible. Therefore, computer simulations are performed to adjust the newly 

induced parameters and validate the theoretical presentation. 

Further, Helbing et al. (2002) establish a comparison between pedestrian behaviors in 

normal and evacuation situations. The social force model alters between these analyzed cases 

since the nervousness factor is implemented. In a normal situation, the self-organization of 

pedestrians is emphasized through line formation along hallways and oscillations at bottlenecks. 

On the other hand, panic circumstances are more chaotic. The tendency of herding, lane 

breakdown and clogging are observed, which in return reduces the chance of survival. 

Lakoba, Kaup, & Finkelstein (2005) improve on the basic ideas of Helbing et al. (2000). 

Despite the accuracy of their theoretical model presented for a panic situation based on modeling 

pedestrians as Newtonian particles, the parameters within the repulsive terms are not realistic. 

They are not valid for a small crowd or a separate pedestrian. Also, the repulsive term used to 

model pedestrian-pedestrian and pedestrian-wall repulsion does not guarantee overlapping 

prevention. For this purpose, an optimized algorithm is set up to seek for the values of the 

adequate parameters. The density effect is also taken into consideration and implemented in the 

force expression derivation as it inversely affects the free speed of a pedestrian. The proposed 

model is simulated by monitoring the evolution of pedestrian within a closed room with a single 

exit.  

Analyzing pedestrian motion helps planning for facilities and predicts evacuation 

strategies to suppress the risk of human lives loss. For instance, Makkah is a city in Saudi Arabia 
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that receives millions of Muslims across the world for pilgrimage during the last month of the 

Muslim calendar. Deaths due to pushing in high-density crowds have been recorded every year. 

Therefore, modifications to the building have been established to facilitate the rituals. Temporary 

mobile floors have been inserted to organize the crowd and are held by pillars. This expands the 

mosque capacity and reduces the crowd density on the ground floor. Dridi (2015) simulated the 

pilgrimage situation using Pedflow. The software solves the differential equation of motion using 

a microscopic social force approach. An empirical data has been first collected using cameras 

and human detectors to assess the density and capacity of the site and inputted to the simulation. 

The pedestrian motion is circular, and the tour induces body contacts since the density ranges 

between 5 to 8 persons/m2. The performed simulation shows that by addition of the mobile floor, 

the crowd density reduces and enables more comfortable displacement of pilgrims. The study 

also aimed to shed light on the important role of the social and physical force model to plan and 

set up evacuation strategies in emergency conditions in highly congested zones.  

Mehran et al. (2009) exploit the principle of social force model to localize abnormalities 

in a crowd. For this aim, a data set of crowd videos are interpreted. A grid of mobile points is 

placed over the screen, and the floating particles are allowed to move with the stream of people. 

The estimation of the interactive forces between the pedestrian and his surrounding is indicative 

of distortions. Their method proved its capability to evaluate the crowd as a whole without the 

need for identifying every single individual and identify the irregularities. 

Chraibi, Seyfried, & Schadschneider (2010) suggest a theoretical improvement to the 

repulsive term in the social force model to prevent collision between individuals. In contrast to 

the standard circular representation of the pedestrian, a more realistic elliptical concept is 
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introduced. The study restricts itself to crowd enclosed in corridors, and a unique set of 

parameters for this investigation are chosen.  

Based on the model proposed by Helbing et al. (2000), Yang, Dong, & Yao (2017) 

simulated a crowd evacuation in Beijing south subway station to emphasize the role of crowd 

leaders, guiding the crowd to the nearest exits, in suppressing evacuation time and reduce 

injuries and lives loss. The microscopic social force model is extended to identify the direction of 

the socio-psychological force and account for the tendency of pedestrians to follow the crowd 

when the vision is obscure, and the exits are not acknowledged. Several computational 

experiments have been run, and the mean evacuation time is obtained with and without 

evacuation leaders. Also, the mock-ups are validated using simple evacuation simulations from a 

square room with a single exit. It has been concluded that the appropriate number of leaders as 

well as their accurate distribution near stairs, corners and bottlenecks at clogged exits plays an 

important role in accelerating the clearance of travelers.  

Chen, Di, Liu, & Wang (2017) performed a computer simulation using the AnyLogic 

software to mimic the evacuation situation in case of emergency in the Xizhimen Metro station 

in Beijing since it is quite hard to perform actual experiments. The panic situation is manifested 

by a mathematical model accounting for the pedestrian’s response time to an emergency, the exit 

distance, and the abnormal crowd density. Also, the pedestrian motion is obtained using the 

social force model developed by Helbing et al. their theoretical model enables the evaluation of 

the panic spread time and rate among the travelers. 

Von Sivers et al. (2016) modeled the emergency evacuation of the London train station 

when bombed in 2005 using a new approach combining a locomotion model combined with 
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social identification and self-categorization theories. The authors implement the psychological 

factor to mimic the real situation. The social identification reflects the situation of the 

pedestrians; they can be safe and evacuate without caring or supportively intervene in the rescue 

process. Unlike previously established analyses, this model takes into consideration the helping 

behavior to assist injured pedestrians to evacuate. Incapacitated travelers are either represented 

by low-speed moving particles or stationary obstacles if severely injured. To accurately identify 

the model parameters, an uncertainty quantification method is used. The range of people sharing 

the same social identity, the number of injured pedestrians as well as the mobility of the rescuer 

of an injured individual are the calibrated inputs. 

Alonso-Marroquin, Busch, Chiew, Lozano, & Ramírez-Gómez (2014) investigate the 

occurrence of the tragic incidence that took place in the Madrid Arena Pavilion in 2012 in Spain, 

where five girls were a victim of a crowd stampede. In contrast to the conventional 

representation of pedestrians as single or three-circles for a comfortable or moderately crowded 

environment, the authors suggest a spheropolygons representation of pedestrians to simulate 

heavy crowd conditions. The social force model based on Newton’s law of motion and proposed 

by Helbing et al. is used, although additional forces for contact, friction, and ground reactions are 

added. A counter-flow of pedestrians in a corridor is selected to reproduce the real incidence.  

Kirkland & Maciejewski (2003) suggest introducing autonomous robots to organize a 

flowing crowd. A social force model based on gas kinetics and developed by Helbing et al. 

(2002) to animate the motion of the heterogeneous mixture of robots and human agents. The 

model also takes into account the visual and audible effects generated by the robots to steer the 

pedestrians towards them. The simulation models guided pedestrian motion by maneuvering 



 

 Multi-scale models for transportation systems under emergency 59 

robots along a hallway. The role of the robots is to suppress the deviation and disturbance of 

people movement towards the openings, generate line formation pattern, and organize jamming 

and bottlenecks at narrow exits. 

From a computer graphics perspective, Pelechano, Allbeck, & Badler (2007) suggest an 

improvement to the mathematical models previously proposed by implementing a high-density 

autonomous crowd model relying on psychological, physiological and geometrical rules for a 

more realistic simulation. Unlike conventional models that generate animated, impracticable 

particles, this method mimics the real human movement. This technique also eliminates the 

fluttering of the particles during time step evolution occurring at high-density crowds. Also, the 

social force model enables a continuous domain of motion in contrast to the cellular automaton 

data, which discretizes the plane of movement and restricts the pedestrian to some specific spots. 

Moreover, the queuing in a normal situation and pushing in impeded crowd motion are 

underlined.  

The researchers now describe the past work related to modeling of pedestrians during air 

travel in the context of the spread of contact-based diseases, such as Ebola and SARS. The 

researchers formulate new models of pedestrian movement in the air transportation infrastructure 

and integrated the model with a stochastic framework for infectious disease surveillance of 

populations moving within airports using social force modeling and meta-population epidemic 

modeling. In order to assess the effect of local transportation policies, our model simulates 

pedestrian trajectories and uses these to get estimates of direct and indirect contacts as people 

move through high-density areas in airports and airplanes. The researchers achieve this by 

modeling the time evolution of pedestrians, treating them as particles that interact with other 
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pedestrians and inanimate objects like walls and chairs. The force  acting on ith pedestrian can 

be defined as:  

        (1) 

The pedestrian position at a given time obtained by integration with respect to time. Here 

 is the desired velocity of a pedestrian,  is the actual velocity,  is the mass, and  

is a time constant. The momentum generated by a pedestrian’s intention results in a self-

propulsion force that is balanced by a repulsion force . The researchers introduce location 

dependence to the desired velocity in the self-propulsion term as: 

       (2) 

Here,  is the direction of desired motion,  and  are the deterministic and 

stochastic components of the desired velocity, and  is a distance constant such that at a distance

 between the ith and kth pedestrians the desired velocity of ith pedestrian is zero.  

There are several parameters in the model in equations (1) and (2). Experimental data is 

available for some of the parameters, such as walking speed (See Table 1). The researchers 

perform a massive parameter sweep of feasible ranges of parameters and correlate it with 

available experimental data to identify narrower parameter ranges that are realistic. We 

demonstrated this approach in the limited context of pedestrians exiting from airplanes (Namilae 

et al., 2017a). The researchers simulated several possible paths and identified parameter ranges 

that produce simulation results in agreement with empirically observed exit times for airplanes of 
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different sizes. This is illustrated in Fig. 2. Also, the researchers also checked if simulations 

reproduced qualitative features of observed passenger exit patterns (Marelli 1998, Wald 2014). 

The pedestrian trajectory information from the above model is integrated with a discrete-

time stochastic susceptible-infected (SI) model for infection transmission as described in 

(Namilae et al., 2017b). Using this multiscale approach, the researchers the impact of different 

procedures for boarding, disembarkation, and seat assignment on the number of contacts and 

consequent spread of Ebola infection for passengers on an airplane. Our results show promise for 

Figure 1. Validation of simulation based on empirical observations of deplaning. 

Figure 3. Infection profile with different boarding strategies for Boeing 757-200. 
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substantial impact. For example, Figure 2 shows that on a 182 passenger Boeing 757 aircraft, 

different boarding policies can lead to changes in infection transmission. The researchers have 

also obtained similar results showing the potential for changes in in-plane movement, deplaning 

procedure, seating arrangement, and plane sizes in reducing the likelihood of infection 

transmission.  

Aggregated results of our model indicate that the probability of generating 20 infectives 

per month from air-travel could have been reduced from 67% to 40% using better pedestrian 

movement strategies during the 2014 Ebola epidemic if unrestricted air travel had been permitted 

at the 2013 levels. This could have been further reduced to 13% by exclusively using smaller 

fifty-seater airplanes (Namilae et al., 2017b).  

Pedestrian density effect. Pedestrian density is one of the primary factors affecting the 

movement of pedestrians. This is expected to be more important during an emergency and high 

crowd density situations. There is significant experimental evidence for reduction of pedestrian 

speed with increase in pedestrian density with studies dating back from 1935 as tabulated in 

Table 1. The reduction in the speed of the overall pedestrian group as a function of density has 

been curve-fit to experimental data and is expressed either in linear or exponential forms by 

various researchers as tabulated. The table and corresponding notes describe the reduction in 

pedestrian speed when more people are in their proximity. The researchers will incorporate some 

of these ideas into this research plan. 

Table 1  

Literature survey of pedestrian density vs speed data and equation descriptions. 
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References Speed-density relation Notes 

Greenshields (1935) S = -a.D’ + b 
Where: D’: density, a, b: 
constants for the fitting line 

Data collected by photographic 
method on a roadway section to 
monitor the traffic capacity. 
 

Older (1968) v(k) = vf – 𝜃.k 
 

 

Navin (1969)  v(k) = vf – 𝜃.k 
where: vf : free flow speed, k: 
density 
𝜃: parameter 

 

Fruin (1971) S = 𝑎.𝑀−𝑏

𝑀
  

Where: M=1/𝜌, 𝜌 : density, a, 
b: constants for the fitting 
curve 

Uses level Of service (LOS) concept 

Pushkarev (1975) V=-α.k + β 
 

The author incorporates previous 
work for the various pedestrian 
types.  

Tregenza (1976) ve = vf . exp (-(𝑘

𝜃
)  𝛾) 

 

 

Polus (1983) V=−𝛼. 𝑘 + 𝛽 
 

Video Data collected in the central 
business district of Haifa, Israel. 

Tanaboriboon 
(1986) 

v(k) = vf – 𝜃.k 
 

Bidirectional pedestrian data from 
sidewalks in Singapore using a 
photographic technique. 
 

Tanaboriboon 
(1989)  
 

V=−𝛼. 𝑘 + 𝛽 
 

Videographic data on pedestrian 
traffic in four walkways in Central 
Bangkok. 
The linear model represented the best 
fit. 

Weidmann (1993) v= 𝑣𝑚 { 1 – exp [ -𝛾 (1

𝑢
 - 1

𝑢𝑀
 ) ] 

} 
Where: 𝑣𝑚: free pedestrian 
speed 
𝛾 : fitting a free parameter. 𝑢𝑀 
: maximum admissible density 

 

Lam (1995) v(k) = vf – 𝜃.k 
where: vf : free flow speed 

 



 

 Multi-scale models for transportation systems under emergency 64 

k: density, 𝜃: parameter 
 

Tewarson (2002) v(k) = vf – 𝜃.k 
 

 

Al-Azzawi (2007)  
 

Ln S = 𝛼 ln V – 𝛽 ln D + 𝜀  
Where: S: speed, V: volume 
or flow 
D: density, 𝜀 : random noise 
(constant) 
𝛼, 𝛽: constants 
 

Pedestrian movement on sidewalks 
in the United Kingdom. To develop 
speed, flow, and density 
relationships.  

Bruno (2008)  Kladek non-linear formula 
Weidman (1993): 
v= 𝑣𝑚 { 1 – exp [ -𝛾 (1

𝑢
 - 1

𝑢𝑀
 ) ] 

} 
 

The study estimates the 𝑣𝑚, 𝛾 and 𝑢𝑀 
in Kladek formula taking into 
account various factors that influence 
the density-velocity relation such as 
age, culture, gender, travel 

purpose, type of infrastructure, 

walking direction represented in 
parameters 𝛼 and 𝛽  
 

Hongfei (2009)  V=−𝛼. 𝑘 + 𝛽 
 

Data collected in the Chinese 
passenger transport terminal—
Xizhimen underground station using 
video recording. 
 

Laxman (2010) V=−𝛼. 𝑘 + 𝛽 
 

Data collected at four locations in a 
medium-sized city of India and a 
metropolitan city in India. 
 

Chen, Ye, & Jian 
(2010) 

Level passageway: 

V = 75.267 x D x 𝑒−
1

2
(

𝐷

1.534
)

2

 
Ascending stairway: 
𝑉 = −0.917𝐷3  −

1.234𝐷2  + 36.166𝐷  
Descending stairway: 
V = −0.12𝐷3 − 7.74𝐷2 + 
46.754D 
Two-way stairway: 
V = 0.161𝐷3 − 9.113𝐷2 + 
46.698D 

Confined level passageways, 
ascending stairways, descending 
stairways, and two-way stairways in 
Shanghai, China, Metro stations with 
massive passenger volumes were 
observed. 
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Rahman (2013) 
 

V=𝛼 – 𝛽.k + e 
Linear formula with the 
addition of e, a random error 
term due to stochastic 
variations 

Data collected from three different 
locations in Dhaka. Pedestrian speed-
flow-density relationships are 
predicted using a weighted 
regression method. 
 

Rastogi (2013) v(k) = vf .exp (-𝑘

𝜃
) Data collected from five cities in 

India. 
Das (2015) 
 

U = 𝑈𝑓 – (𝑈𝑓

𝑘𝑗
 ) k  

U = 𝑈𝑓 𝑒
−𝑘

𝑘𝑚 
 

Where: 

𝑈𝑓: free-flow speed, 𝑘𝑗: jam 
density 
𝑘𝑚: optimum density 
 
 

From speed-density relation, the 
Greenshield (1935) and Underwood 
(1961) models were fitted to 
determine the parameters 𝑈𝑓, 𝑘𝑗 and 
𝑘𝑚. 
The study describes bidirectional 
flow characteristics on sidewalks and 
carriageways around transport 
terminals in India. 

Kretz (2016)  v(𝜌) = v0 – ( 1 – 𝜆 ) 𝜏 A 1

𝑒
1

𝐵𝜌 −1

 

where: 

v0: the desired speed of 
pedestrian (the same for all 
pedestrians) 
A>0, B>0, 0≤𝜆≤1, 𝜏>0 are 
appropriately chosen values  

Derived from the Social Force Model 
for Steady-States in Single-File 
Movement. 
 

Nikolić (2016) ve = vf . exp (-(𝑘

𝜃
)  𝛾) 

where: 

ve: equilibrium speed, vf : 
desired velocity, 𝜃, 𝛾 : 
pedestrian specific parameters, 
k: density 
 

Derived from the microscopic social 
force model proposed by Helbing 
and Molnar (1995). Tragenza model 
(1976) 
Two datasets: Pedestrian underpass 
at Lausanne train station and a 
controlled experiment at the 
Technical University of Delft. 
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Description of problems 

The top two priorities under emergencies are saving and protecting life, as well as the 

elimination of damage to properties. Numerous studies have been conducted to replicate 

previous emergencies to study the deficiencies and errors in emergency responses and develop 

better emergency response plans. Emergency evacuation planning had become an inevitable 

process to protect the general public in unforeseen emergency situations (Alexander, 2013). 

Although researchers have been able to simulate the policy factors, human factors are very 

difficult to replicate. Some studies use simulation models to simulate pedestrian moving velocity, 

pedestrian density, required space to move, and step length. However, human factors such as 

relationship to other evacuees, the purpose of the trip, and other psychological differences among 

people are difficult to quantify. Some studies have used interviews as an approach (Cocking et 

al., 2009). Also, in Purser and Raggio’s study in 1995 and Purser and Bensilum’s study in 1999 

(as cited in Purser & Bensilum, 2001) video and questionnaire analyses were used to investigate 

occupancy types, human behavior and psychological changes during emergency events, 

especially during evacuations. In the present day, researchers are still seeking accurate methods 

to understand human behavior during emergency events.  

Current studies of emergencies generally lack human behavior investigation, especially in 

emergency planning modeling. Therefore, the goal of this study was to evaluate various factors 

that affect the efficiency of evacuation during an emergency. Case study 1 investigated the effect 

of the number of exits and the number of passengers on the efficiency of evacuation at 

emergencies. Case study 2 investigated the effect of the number of passengers and the evacuation 

policies on the efficiency of evacuation. Case study 3 investigated the effect of group travel and 
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instructions on evacuation at emergencies. Finally, Case study 4 used a multiscale model for the 

optimal design of pedestrian queues to mitigate infections disease spread.  

Case study 1 

Research Question and Hypothesis 

This study investigated the effect of the number of exits and the number of passengers on 

the efficiency of evacuation. In this study, the first null hypothesis (H0) was to validate the model 

by comparing the average of the total evacuation time, which would not be significantly different 

from the actual evacuation time. The second hypothesis (H1) for the experiment was that an 

increased number of passengers would not significantly affect a total evacuation time. The last 

hypothesis (H2) was that the number of exits would not have a significant effect on the total 

evacuation time.  

Methodology 

This study used AnyLogic Simulation Software to simulate an airport emergency 

evacuation that occurred when passengers began to de-board from the aircraft and predicted a 

total evacuation time for the passengers to evacuate from the airport. Hence, the simulation clock 

started when the first passenger began to disembark at the airport’s second floor. The simulation 

clock ended as soon as the last passenger successfully escaped from one of the available airport's 

exits. Figure 4 illustrates the flowchart of the evacuation scenario. In the next sections, the data 

sources and format were described for the development of the baseline model.  
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Figure 4. Airport evacuation events flowchart. 

Parameter settings. The parameter settings in the model consisted of two data sources. 

The first part of the data source came from the author, who collected the data by observing at the 

airport. The second part of the source came from the review of the corresponding parameter 

settings from the previous studies. 
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Airport layout. This study uses a local airport as a testbed. The airport terminal used in 

the study consists of two floors. The first floor was the public area with six exit doors, as shown 

in figure 5. Passengers who arrived at the terminal gate on the second floor had to go to the first 

floor and choose one of the exit doors to evacuate from the airport terminal.  

The second floor had the security checkpoint and six gates for boarding and de-boarding, 

as shown in figure 6 and figure 7. Noticeably, the layout, as shown in figure 5 and figure 6 

showed that there was just a one-way route to reach the first floor. The evacuation event was 

designed to simulate an evacuation scenario that happened at the concourse area on the second 

floor, and the passengers were assigned equally to the exit doors on the first floor under the 

guidance of emergency leaders. Until the condition became safe for the passengers, they would 

remain outside of the airport terminal. 

 

Figure 5. The first floor of the airport. Adapted from Daytona Beach International 

Airport. Retrieved February 28, 2017, from http://www.flydaytonafirst.com/airport-

information/terminal-layout.stml 
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Figure 6. The second floor of the airport. Adapted from Daytona Beach International 

Airport. Retrieved February 28, 2017, from http://www.flydaytonafirst.com/airport-

information/terminal-layout.stml 

 

 

Figure 7. Airport concourse layout on the second floor. Adapted from Daytona Beach 

International Airport. Retrieved February 28, 2017, from http://www.flydaytonafirst.com/airport-

information/terminal-layout.stml 

http://www.flydaytonafirst.com/airport-information/terminal-layout.stml
http://www.flydaytonafirst.com/airport-information/terminal-layout.stml


 

 Multi-scale models for transportation systems under emergency 71 

To simulate the model as close as an actual situation at the airport, the author observed 

the airport and collected data such as the passenger arrival rate, passenger traffic volume, and 

leaving time from the airport. For the actual arrival rate of passengers, the author observed seven 

flights with a total of 44 samples at the airport, as shown in Appendix A. The actual average 

appear rate for passengers de-boarding was calculated as 2.98 sec/person by using a statistical 

analysis method. Meanwhile, the author observed additional 32 arriving flights at the airport, as 

shown in Appendix B. This observational data indicated the passenger volume per flight and the 

duration of the passengers leaving the airport.  

Facilities and passenger settings. In addition to the data collected from the airport, the 

study also referred to other sources to assist and calibrate the parameter settings in the simulation 

model. In the simulation model, the elevator was ignored due to the following reasons. The first 

reason for neglecting the elevator was that passengers had rarely used it during the author’s 

observation in the airport. The second reason was that it is prohibited to use the elevator at an 

emergency. The third reason was that the passengers who used the elevator normally have 

disabilities, and disabled passengers were excluded in this study. Therefore, in the simulation 

model, it was assumed that passengers could only use the escalators and the stairs. 

From the observations in the airport, most of the passengers remained stationary when 

they used the escalator. Therefore, the pedestrian speed can be assumed to be equal to the 

escalator’s speed at that moment. In the previous studies, the constant average speed of an 

escalator was set to 0.5 m/s in their baseline models (Uimonen et al., 2016; Carrillo, Díaz-

Dorado, Cidrás, & Silva-Ucha, 2013; Li et al., 2015). Therefore, the escalator speed of 0.5 m/s 



 

 Multi-scale models for transportation systems under emergency 72 

was used in the baseline model as a pedestrian moving speed when they used the escalator in 

normal conditions.  

Under the emergency conditions, Li et al. (2015) and Kinsey, Galea, and Lawrence 

(2014) found that people would walk on the stairs of an escalator to accelerate their escape 

speed. Through recording and observing 810 escalator walkers, the average speed in the 

downward direction was calculated to be 0.82 m/s (Kinsey et al., 2014). Thus, the 0.82 m/s was 

the parameter to simulate the speed when pedestrians using the escalators in an emergency 

condition.  

Fujiyama and Tyler (2010) studied pedestrians’ walking speed at the stairs. They 

randomly selected 33 participants and divided them into two groups based on their age. They 

observed the participants on four types of stairs and recorded the descending speed, as shown in 

Table 2. After statistically analyzing the collected data, the normal distribution of the average 

descending rate was 0.67 ± 0.16 m/s. This rate is the average walking speed in the baseline when 

pedestrians walk downstairs in normal conditions. Whereas to simulate the emergency 

conditions, the normal distribution of the fastest descending speed, 0.90 ± 0.20 m/s was used. 

Table 2 

Participants Walking Speed on the Stairs   

Patterns of speeds 

Stairs 
Elderly 

(Age: 60-81) 
Young 

(Age: 25-60) Stair No Degree 

Normal descending 

Stair 1 38.8 0.47 ± 0.12 0.59 ± 0.14 
Stair 2 35 0.58 ± 0.16 0.65 ± 0.14 
Stair 3 30.5 0.64 ± 0.15 0.74 ± 0.17 
Stair 4 24.6 0.80 ± 0.23 0.87 ± 0.19 

Fastest descending  Stair 1 38.8 0.62 ± 0.17 0.87 ± 0.20 
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Stair 2 35 0.70 ± 0.18 0.92 ± 0.19 
Stair 3 30.5 0.84 ± 0.18 1.08 ± 0.23 
Stair 4 24.6 1.01 ± 0.26 1.18 ± 0.20 

 

Note. The unit was m/s. Adapted from “An Explicit Study on walking speed of 

pedestrians on stairs” by Fujiyama, and Tyler, 2010, Transportation Planning and Technology, 

Copyright by Fujiyama, and Tyler. 

Passengers in the model were categorized into people who disembarked from the aircraft 

and those who were waiting in the concourse area for the departure flights. Based on the flight 

schedule, the passengers deplaned from the arriving flights and entered the concourse area on the 

second floor of the airport. 

Chandra and Bharti (2013) collected and analyzed the normal distribution of pedestrian 

walking speeds on the wide sidewalk, which was 1.36 ± 0.19 m/s. In this study, the walking 

speed in the baseline was adjusted to 1.36 ± 0.19 m/s, as shown in Table 3. In the emergency 

conditions, human physiology factors would lead to changes in speed. In the emergency 

evacuation simulation, the passenger’s walking speed was uniformed distributed between 1.2 and 

1.8 m/s (Fang et al., 2004).  

In 1994, the Boeing Company had used the 757-200 aircraft as a baseline for simulating 

the de-boarding and deplaning time for the 757-300 aircraft. The results of the deplaning speed 

were approximately ten minutes for 757-200 aircraft with 201 passengers, and nearly 12.5 

minutes for 757-300 aircraft with 240 passengers (Boeing, n.d.).  Combined the deplaning results 

from the Boeing company and the observing results from the author, the arrival rate was 
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conclusively set up to 3 sec/person in the baseline model. Table 3 listed the parameter settings 

that were applied in the baseline model and the experimental models.  

Table 3 

Model Parameter Setting 

 Baseline (m/s) Experimental design (m/s) 
Pedestrians’ walking 

speed 1.36 ± 0.19 (normal distribution) 1.2 ~ 1.8 (uniform distribution) 

Escalator 0.5 (constant) 0.82 (constant) 

Stairs 0.67 ± 0.16 (normal distribution) 0.90 ± 0.20 (normal distribution) 
 

In the models, the passengers who had the fast walking speed could pass slow-walking 

passengers. To maintain safety, the constant speed was applied when passengers using the 

escalator. It implied that passengers would not be able to exceed each other.  

Baseline Model. The baseline was developed based on the observed normal 

disembarking process. The scenario of the model was designed that passengers disembark from 

the airplanes on the second floor to the exits on the first floor with the considerations of the 

actual airport configuration. The baseline model consisted of three sections. It began with 

generating passengers from the concourse area at the second floor, then created routes that 

passengers walked from the concourse area to the first floor, and finally made selections of 

different egress at the first floor. Figure 8 illustrates the first two sections of the model. The 

arrived passengers first would walk from the concourse area to the escalator or stairs area on the 

second floor. At that point, they would either take the escalator or walk down the stairs to the 

first floor, according to an observed probability by the author. As soon as they arrived on the first 
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floor, they would be equally assigned to the access paths to the exit doors, which is shown in 

figure 9. 

 

 

 

Figure 8. Passengers from the concourse area on the second floor 

 

 

Figure 9. Passengers select different available egresses to exit at the first floor 
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Validation of the Baseline Model. The data collected from the author’s observation was 

used to calibrate the parameters in the baseline model. A statistical t-test method was used to 

validate the baseline model. The t-test compared the average duration of the evacuation of the 

simulation model and observed evacuation time and was tested whether there was a significant 

difference between them. An alpha level of .05 was used as the significance threshold for the t-

test. 

Experimental Model. Once the baseline model was validated, an experimental simulation 

model was developed. The author adjusted the parameters from the baseline model to the 

experimental model. The experiment assumed that under the emergency, people were equally 

guided to the available egress, and their paths were not allowed to change. 

The experiment was primarily designed to test the two independent variables, namely, 

number of passengers and number of exits. When investigated the number of passengers, the 

passenger volume was set up at three levels, which represented as the minimum, the maximum, 

and the future passenger traffic volume of flights that simultaneously arrived at the airport. So, 

when only one flight arrived, the passenger volume was at the minimum level. When all six 

airport gates were being used at the same time, the passenger volume reached the maximum 

level. The future passenger volume was assumed to be 1000 people based on the forecast.  

When investigating the number of exit doors at the airport, the variables were also set at 

three levels, which was shown in table 4. Generally speaking, they represented a minimum, 

medium, and a maximum number of available exit doors when the passengers evacuated from 

the airport.  

Table 4 
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Three Levels of Exit Doors 

 Number of Exit Doors 
Available 1 3 5 

Unavailable 5 3 1 
Total 6 6 6 

 

A two-way between-subjects ANOVA test was conducted to test the effect of the two 

independent variables on the total evacuation time, and an alpha level of 0.05 was used as the 

significance threshold for the test.  

The experimental results were to verify whether the dependent variable, total evacuation 

time, would be significantly affected by the two independent factors. Also, the statistical results 

could approximately provide a theoretical evacuation time with a different number of passengers 

and a different number of exit doors.   
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Results 

 This section detailed the results from the baseline and the experimental models. A t-test 

and a two-way between-subjects ANOVA test were used to analyze the results. The significance 

level used to determine the validity of the assumptions was set at 0.05. The Sidak post hoc tests 

were used to determine the significant differences of the two-way between-subjects ANOVA 

test.  

Baseline model validation results. Through the observation at the airport, the author 

collected the total evacuation time of the passengers from different airlines and flight schedules 

between March 1 and April 13, 2017, shown in Appendix B. Table 5 showed the results of the 

average exit time that passengers walked from the concourse area to the exits. Figure 10 

illustrates the screenshots of the baseline model in the AnyLogic software.  

Table 5 

Observations of Exit Time at the Airport 

 Passengers Exit Time (second) 
N    Valid 
      Missing 

31 
0 

31 
0 

Mean 111 620.81 
Std. Deviation 50 212.06 
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Figure 10. Simulation Baseline from the AnyLogic 

Based on the statistical analysis, the average passenger volume was 111 people on each 

flight. Therefore, the arrivals of 111 passengers were generated in the baseline model and ran a 

sample of 13 replications for the baseline simulation. The simulated total evacuation time, as 

shown in figure 11, was used to compare with the actual observed evacuation time in the airport. 

The t-test was based on the null hypothesis that the average of the simulation exit time was not 

significantly different from the actual time. The result of t-test was not significant at the alpha 

level of .05, t(13) = .205, p = .839. As a result, the null hypothesis was retained, and the model 

baseline was statistically validated.  

Figure 11. Simulation baseline 
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Experiment results. Based on the validated baseline model, an experimental model was 

developed to include the passenger moving speed change under emergent situations. The 

experimental design was aimed to test whether the total evacuation time would be influenced by 

the different number of passengers and the number of exits available during an evacuation. As 

mentioned in the previous paragraph, the statistically analyzed result of average passenger 

volume was 111 passengers per flight. Therefore, the passenger volume of six flights was 666 

passengers. 

A two-way between-subjects ANOVA was applied in the experimental design. A 3 

(number of passengers: 111, 666, 1000 people) x 3 (number of exit doors: 1, 3, 5) two-way 

between-subjects ANOVA was conducted on evacuation time. As shown in table 6, the results 

showed a significant main effect of the number passengers at the alpha level of .05, F (2, 531) = 

9548.020, P < .05, and a significant main effect of number of exits, F (2, 531) = 49.236, P < .05, 

and a significant effect of interaction between numbers of passengers and number of exits, F (4, 

531) = 44.552, p < .05.  

Table 6 

Two-way Between-subjects ANOVA Table 

Dependent Variable:  Evacuation Time  

Source 
Type III Sum of 

Squares df Mean Square F Sig. 
Partial Eta 
Squared 

Corrected Model 9466962.200a 8 1183370.275 2421.590 .000 .973 
Intercept 129551120.417 1 129551120.417 265106.955 .000 .998 
Passengers 9331756.233 2 4665878.117 9548.020 .000 .973 
Exits 48120.700 2 24060.350 49.236 .000 .156 
Passengers * Exits 87085.267 4 21771.317 44.552 .000 .251 
Error 259486.383 531 488.675    
Total 139277569.000 540     
Corrected Total 9726448.583 539     
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a. R Squared = .973 (Adjusted R Squared = .973) 

Experimentation results for the number of passengers. The experimental simulation 

investigated three levels of passenger traffic volume during an evacuation, and the mean of each 

level was shown in table 7. Base on the alpha level set at .05, the results indicated that the mean 

evacuation time for 111 passengers (M = 317.200, SD = 18.422) was significant lower than the 

mean evacuation time for 666 passengers (M = 516.300, SD = 28.146) and 1000 people (M = 

635.917, SD = 32.763). Table 8 displayed the results of the Sidak post hoc tests for the main 

effect of the number of passengers.  

Table 7 

Evacuation Time Based on Number of Passengers (in seconds) 

Number of 
Passengers 

Mean 
Std. 

Deviation 
N 

95% Confidence Interval 
Lower Bound Upper Bound 

111 317.200 18.422 180 313.963 320.437 

666 516.300 28.146 180 513.063 519.537 

1000 635.917 32.763 180 632.680 639.153 

 

Table 8 

Pairwise Comparisons in Evacuation Time (in seconds) - Number of Passengers 

Number of Passengers Number of Passengers Mean Difference Std. Error Sig.b 
111 666 -199.100* 2.330 .000 

1000 -318.717* 2.330 .000 
666 1000 -119.617* 2.330 .000 

 

Note. Based on estimated marginal means 

*. The mean difference is significant at the 5% level. 



 

 Multi-scale models for transportation systems under emergency 82 

Experimentation results for the number of exits. The experimental simulation 

considered that three different levels, which when one exit door, three exit doors, and five exit 

doors were available for the evacuation. For each level, all the possibilities of the exit doors were 

included. By using the combination methods, there were six possible combinations when one 

exit door ((6
1

)) and five exit doors ((
6
5

)) were available during the evacuation; 20 possible 

combinations when three exit doors ((
6
3

) =  
6!

3! 3!
) were available during the evacuation. The 

post hoc analysis of the results of all the combinations of available exits doors was shown in 

Table 9 and 10. 

As the alpha level set at .05, the results indicated that the mean for one exit door (M = 

503.156, SD = 153.447) was significant higher than the mean for three exit doors (M = 483.089, SD = 

125.164) and five exit doors (M = 483.172, SD = 121.888). Table 9 displayed the Sidak post hoc tests for 

the main effect of the different number of exits. 

Table 9 

Evacuation Time Based on Number of Available Exits 

Number of 
Exits Mean 

Std. 
Deviation N 

95% Confidence Interval 
Lower Bound Upper Bound 

1 503.156 153.447 180 499.919 506.392 

3 483.089 125.164 180 479.852 486.326 

5 483.172 121.888 180 479.935 486.409 
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Table 10 

Post Hoc Analysis Results - Number of Exits Effects on Evacuation Time (in Seconds) 

Number of Exits Number of Exits Mean Difference Std. Error Sig.b 
1 3 20.067* 2.330 .000 

5 19.983* 2.330 .000 
3 5 -.083 2.330 1.000 

Note. Based on estimated marginal means 

*. The mean difference is significant at the 5% level. 

Experimentation results for the effect of passengers and interaction relationships 

between exits and passengers. Table 11 and Table 12 displayed the means and the standard 

deviations for each combination of the two independent variables, which were the number of 

passengers and the number of exits.  

Table 13 showed the results of the Sidak post hoc tests of the interaction relationships 

with certain amount of exits with a quantity of passengers. As the alpha level set at .05, the 

results had shown that when only one exit door was available during the evacuation, 1000 

passengers (M = 667.40, SD = 36.873) significantly needed spending more time than 111 

passengers (M = 306.25, SD = 24.283) and 666 passengers (M = 535.82, SD = 39.240) did; once 

three exit doors were available for the evacuation, 1000 passengers (M = 619.12, SD = 15.931) 

still spent significantly longer time than 111 passengers (M = 320.37, SD = 13.012) and 666 

passengers (M = 507.67, SD = 12.534) did; when five exit doors were available, 1000 passengers 

(M = 619.12, SD = 11.354) also needed significantly more time than 111 passengers (M = 

324.98, SD = 8.765) and 666 passengers (M = 505.42, SD = 11.089) did. Figure 13 clearly 
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presented the relationships of the two independent variables, which was based on the different 

number of exits with certain number of passengers.  

Table 11 

Simple Main Effect – Number of Passengers & Exits 

Number of Passengers Number of Exits Mean Std. Deviation N 

111 

1 306.25 24.283 60 
3 320.37 13.012 60 
5 324.98 8.765 60 

Total 317.20 18.422 180 

666 

1 535.82 39.240 60 
3 507.67 12.534 60 
5 505.42 11.089 60 

Total 516.30 28.146 180 

1000 

1 667.40 36.873 60 
3 621.23 15.931 60 
5 619.12 11.354 60 

Total 635.92 32.763 180 

Total 

1 503.16 153.447 180 
3 483.09 125.164 180 
5 483.17 121.888 180 

Total 489.81 134.333 540 
 

Table 12 

Simple Main Effect – Passengers & Exits (in seconds) 

Passengers Exits Mean Std. Error 
95% Confidence Interval 

Lower Bound Upper Bound 
111 1 306.250 2.854 300.644 311.856 

3 320.367 2.854 314.760 325.973 
5 324.983 2.854 319.377 330.590 

666 1 535.817 2.854 530.210 541.423 
3 507.667 2.854 502.060 513.273 
5 505.417 2.854 499.810 511.023 

1000 1 667.400 2.854 661.794 673.006 
3 621.233 2.854 615.627 626.840 
5 619.117 2.854 613.510 624.723 
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Table 13 

Pairwise Comparison – Exits with Different Number of Passengers (in seconds) 

Exits Passengers Passengers Mean Difference Std. Error Sig.b 
1 111 666 -229.567* 4.036 .000 

1000 -361.150* 4.036 .000 
666 111 229.567* 4.036 .000 

1000 -131.583* 4.036 .000 
1000 111 361.150* 4.036 .000 

666 131.583* 4.036 .000 
3 111 666 -187.300* 4.036 .000 

1000 -300.867* 4.036 .000 
666 111 187.300* 4.036 .000 

1000 -113.567* 4.036 .000 
1000 111 300.867* 4.036 .000 

666 113.567* 4.036 .000 
5 111 666 -180.433* 4.036 .000 

1000 -294.133* 4.036 .000 
666 111 180.433* 4.036 .000 

1000 -113.700* 4.036 .000 
1000 111 294.133* 4.036 .000 

666 113.700* 4.036 .000 
 

Note: Based on estimated marginal means 

*. The mean difference is significant at the 5% level. 

b. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 

adjustments). 
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Figure 12. Evacuation time based on passengers 

Experimentation results for the effect of exits and interaction relationships between 

exits and passengers. Table 14 shows the results of the Sidak post hoc tests. It indicated another 

relationship between the different number of passengers and the number of exit doors were 

available.  

With the alpha level set at .05, the results demonstrated that when there were 111 

passengers evacuated from the airport, the evacuation time of one exit door available (M = 

306.25, SD = 24.283) was significantly faster than the evacuation times of three exit doors 

available (M = 324.98, SD = 8.765) and five exit doors available (M = 320.37, SD = 13.012). 

However, the evacuation time of three exit doors available and the evacuation time of five exit 

doors available were not significantly different when there were the 111 passengers during the 

evacuation. When 666 passengers were involved, the evacuation time of one exit door available 

(M = 535.82, SD = 39.240) was significant slower than the evacuation times of three exit doors 
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available (M = 507.67, SD = 12.534) and five exit doors available (M = 505.42, SD = 11.089). 

The evacuation time between three and five exit doors available, similarly, did not have a 

significant difference. When 1000 passengers were evacuated, the evacuation time of one exit 

door available (M = 667.40, SD = 36.873) was significantly different from the evacuation time of 

three exit doors available (M = 621.23, SD = 15.932) and five exit doors available (M = 619.12, 

SD = 11.354) for the passengers to evacuate from the airport. Again, there was no significant 

difference between the evacuation time of three and five exit doors available during the 

evacuation.  

Table 14 

Pairwise Comparison – Passengers with Different Available Exits (in seconds) 

Passengers Exits Exits Mean Difference Std. Error Sig.b 
111 1 3 -14.117* 4.036 .001 

5 -18.733* 4.036 .000 
3 1 14.117* 4.036 .001 

5 -4.617 4.036 .253 
5 1 18.733* 4.036 .000 

3 4.617 4.036 .253 
666 1 3 28.150* 4.036 .000 

5 30.400* 4.036 .000 
3 1 -28.150* 4.036 .000 

5 2.250 4.036 .577 
5 1 -30.400* 4.036 .000 

3 -2.250 4.036 .577 
1000 1 3 46.167* 4.036 .000 

5 48.283* 4.036 .000 
3 1 -46.167* 4.036 .000 

5 2.117 4.036 .600 
5 1 -48.283* 4.036 .000 

3 -2.117 4.036 .600 
Note. Based on estimated marginal means 

*. The mean difference is significant at the 5% level.  
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Discussion  

From the results, the number of passengers and the number of exit doors available was 

the main factors that significantly influenced the duration of the airport evacuation. However, the 

differences of the evacuation time were not significant between three and five exit doors 

available during the evacuation. The following section concluded and discussed the results in 

detail.  

Simulation validation. The result of the t-test retained the first null hypothesis (H0), 

which the average of the model evacuation time was not significantly different from the actual 

evacuation time. It meant that the simulation baseline was correct, and the difference of the 

observational data collected by the author was not ominously dissimilar with the baseline model. 

Furthermore, it revealed the baseline was very close to a daily de-boarding duration at the 

airport.  

Experimental design results. Based on the two-way between-subjects ANOVA test, the 

experimental design results rejected the second hypothesis (H1) and the third hypothesis (H2). 

The experimental design showed that an increased number of passengers (H1) and the number of 

available exit doors (H2) had significant effects on the total evacuation time. Additionally, the 

second and third hypothesis had interactional relationships affected the total evacuation time.  

Number of passengers. The statistical results illustrated that the passenger volume was 

the main factor that could influence a total evacuation time. Figure 13 indicated that a smaller 

volume of passenger traffic always had a lesser amount of evacuation time. As shown in figure 

12, it could be explained as the congestion occurred when a larger amount of people evacuated 

from the airport. When the congestion appeared, the limited personal space-restricted individuals 



 

 Multi-scale models for transportation systems under emergency 89 

from moving as quickly as they could. Therefore, a larger number of passengers would need 

more time to evacuate from the airport.  As a result, an increased number of passengers had a 

positive interaction relationship with the total evacuation time. 

 

 

Figure 13. Evacuation simulation for one exit. Adapted from the Screenshot from 

AnyLogic. 

Number of exit doors. The results of the simulation validated that the number of exit 

doors was another main factor that affected the total evacuation time. When only one exit door 

was available during the evacuation, passengers spend a significantly longer time to evacuate 

than when three and five exit doors were available. However, when three or five exit doors were 

accessible, the differences in evacuation time were not significant. It could be explained as that 

the congestion and the waiting time for the exit queuing were not substantial when passengers 

used multiple exits, shown in figure 13 and figure 14. As a result, there was a negative 

relationship between the number of exit doors and the evacuation time. It indicated that the 
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evacuation time would increase when a smaller number of exit doors were available during the 

evacuation. 

 

Figure 14. Evacuation simulation for five exits. Adapted from the screenshot from 

AnyLogic. 

Relationship between the number of passengers and the exit doors. Figure 15 

indicated an interactional relationship between the number of passengers and the number of 

available exit doors. It could be explained as that the impacts of the exit-door factor were not the 

same across all levels of the passenger factor. Especially, the total evacuation time was not 

significantly different when compared the exit accessibilities between three exit doors available 

and five exit doors available. On the contrary, when only one exit was available, the duration of 

the evacuation was significantly longer than when three or five exits were available for the 

evacuation. It could be interpreted as the fact that the more available exits were better to decrease 

evacuation duration. However, this advantage would be gradually reduced when the number of 

passengers and the number of exit doors reached a certain amount.  
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Figure 15. Evacuation simulation for interaction relationships 
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Case study 2 

Research Question and Hypothesis 

This study investigated the effect of the number of passengers and the evacuation policies 

on the efficiency of evacuation. In this study, the first null hypothesis (H0) was that there would 

be no significant difference regarding the evacuation time for the number of passengers. The 

second hypothesis (H1) for the experiment was that there would be no significant difference 

regarding the evacuation time between the equal distribution and the shortest queue evacuation 

policy.  

Methodology 

The baseline model and alternative models were built with AnyLogic. In this study, the 

normal evacuation was simulated in the baseline model, where the normal walking speed of 

pedestrian was used. In the baseline model, the number of passengers was set as 120, whom all 

evacuated via one exit, this number is based on the actual observation from the airport. Upon the 

validation of the baseline model, the emergency evacuations were simulated in the alternative 

models, modified from the baseline model where the running speed of pedestrians was used. 

In comparison with the baseline model, the experimental model also supported with more 

levels on the number of passengers and the evacuation policies. The validation of the baseline 

model was achieved by comparing the time of normal evacuation generated by AnyLogic to the 

actual observed leaving time of passengers during daily operation at a local airport (KTAR). For 

the experimental model, the independent variables in this study were the number of passengers 

and the different evacuation policies. The dependent variable, the evacuation efficiency, was 
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operationally defined as the total evacuation time for all the passengers. A quantitative approach 

was used in this study. ANOVA was performed in the data analysis program SPSS, with the 

significance level of 5%.  

Design and procedures. Manipulating agents in different conditions and collecting 

output regarding their performance, the design of this study was considered as experimental. A 

baseline model of normal evacuation was created in AnyLogic based on the data collected from 

KTAR. The collected data included the number of arriving passengers in each flight, and the 

time used for all the passengers to leave the terminal building.  

In the baseline model, passengers were designed to proceed the evacuation under several 

essential steps: (1) leave the aircraft and enter the terminal through the aerobridge at the second 

floor; (2) proceed to the escalator and the stairs that connect the second floor with the first floor; 

(3) choose whether to use escalator or the stairs; (4) reach the first floor via the choice they 

make; (5) choose one among the available doors to exit; (6) proceed to the selected door and to 

leave the terminal. Also, passengers in the baseline model were designed to choose the exit doors 

at an equal distribution. In other words, each door among all six doors has an equal chance 

(16.67%) to be selected by each passenger to evacuate. 

The validation for the baseline model was processed after the configuration of the 

simulation model was done. The baseline model was built, including the above six steps in the 

evacuation, and data input, including walking speed, was also collected from the observation and 

Case study 1. The output for the baseline model regarding the evacuation time was compared to 

the actual time taken by passengers to complete evacuation in normal situations. A t-test between 

the average observed evacuation time, and the output from a group of 20 simulations was 
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conducted at the significance level of .05. If there was no significant difference between the 

observed value and the baseline model, the baseline model is considered validated. 

The number of passengers was one of the independent variables in this study. The 

observation indicated an average number of passengers as 120, and it was used in the baseline 

model. As for the setting of the experimental model, the number of passengers was set as three 

levels. According to KTAR’s website, there were six daily flights, two Sunday to Friday flights, 

and one flight that operated four days a week. Airlines serving this airport utilized Airbus 320 

with 150 seats, Canadian Regional Jet 900 with 76 seats, and McDonnell Douglas MD-88 with 

149 seats to carry passengers. The number of passengers was estimated as 600 when six flights 

are arriving at the same time, utilizing all the six gates on the second floor. Considering the 

future growth of this local airport, the highest-level of 1000 passengers was also taken into the 

design. Thus, the three levels for passenger setting were 120 passengers, 600 passengers, and 

1000 passengers. 

According to the terminal layout shown below in Figure 5 of KTAR, there are six doors 

to exit the terminal building on the first floor. Each door has two possibilities to either be used or 

not to be used. During an evacuation, it can range from zero door is used to all six doors are 

used. Therefore, there are 26= 64 combinations of possibility. The combinations are representing 

the situations that no exits are available to the situations that all exits are available respectfully. 

For this study, only that situation with three available doors would be considered, with the other 

three doors were blocked. The three most typical scenarios were chosen to analyze the effect of 

the IVs. 
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The three scenarios were designed in three possible conditions. In the first condition, an 

emergency occurred at the baggage claim area, which is on the right-hand side of Figure 5, on 

the first floor of the terminal building. In this case, Door 5 and Door 6 were not available 

because it was dangerous to walk next to the emergency hazard. For the rest of the exits, Door 4 

was the closest exit from the escalator and the stairs, Door 3 was the second closest, and Door 1 

and Door 2 were at the similar distance in the same direction. Because the experiment was set 

with three exits, Door 1 was omitted. Thus, Door 2, Door 3, and Door 4 were designed to be 

available for the first scenario. The second choice designed for the situation when an emergency 

happened at the Ticket Lobby, which is on the left-hand side of Figure 5. In this case, Door 1, 2, 

& 3 on the left-hand side were taking out of consideration, because it would be very dangerous 

for passengers to walk next to the emergency. Therefore, Door 4, 5, & 6 were chosen in this 

second scenario. The last scenario was designed when an emergency happened in some places 

other than the first floor. As for this situation, all six exits would be available. Within this 

situation, it would be easier to choose the closer exits for passengers to evacuate. Comparing the 

six exits, Door 4 and Door 3 were the first and second closest exit from the escalator and the 

stairs, while Door 5 and Door 6 were further, and Door 1 and Door 2 were at the highest 

distance. To meet the setting of the three doors, Door 4 and 3 were chosen as the optimal 

decision; Door 1 and Door 2 were taken out of consideration under the comparison with Door 5 

and Door 6; Door 5 was omitted between by Door 6. As a result, Door 3, Door 4, and Door 6 

were chosen within this situation. 

When the emergency happened at the Entry Lobby, which is located right in front of the 

escalator and the stairs, passengers would not be able to use any of the exits shown in Figure 5 

on the first floor. Because the emergency hazard could block their way from the escalator and the 



 

 Multi-scale models for transportation systems under emergency 96 

stairs to all the doors, in this situation, the airport operation would instruct passengers to 

evacuate using special emergency exits, which would not be covered in this study. In conclusion, 

to effectively compare three groups of choices, the scenarios were set in the order of numbers 

from lower to higher for the gate choices. The scenario sequence was Door 2, Door 3, and Door 

4; Door 3, Door 4, and Door 6; Door 4, Door 5, and Door 6. 

 

Figure 16. Agents’ evacuation process 

 The process of this simulation was built based on the flow chart shown above in 

Figure 16. As briefly introduced earlier, passenger first de-boarded at specific gates and then 

walked from each gate to the escalator and the stairs, which is the connection between the first 

and second floor of the terminal building. At the connection, passengers were supposed to make 

a decision either to choose the stairs or the escalator to reach the first floor. The probability of 

passengers choosing stairs and choosing escalators was based on the researcher’s observation at 

the airport, where 90% percent of the passengers would choose the escalator, and the rest of the 

passengers would choose the stairs. Once passengers arrived at the first floor, they were 

supposed to enter the selection stage of deciding which gate on the first floor to evacuate 
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through. Passengers were manipulated in two policies selecting exits, which were the same 

distribution policy and the shortest queue policy. At the end of this system, passengers walked to 

the gates they had chosen and exited the system. 

Alternative models were created based on the baseline model. Settings of the alternative 

models were manipulated by the researcher according to the three scenarios mentioned above. 

Within this study, two alternative models were designed. The function of “Select OutPut5” in 

AnyLogic was utilized to mimic the passengers’ choices. Within AnyLogic, the function of 

“Select OutPut5” was the only available choice to simulate a selection with three choices. The 

selection has three modes to be proceeded: by probabilities, by conditions, or by exit numbers. 

The modes of probabilities and conditions were utilized in this study. Under the option of 

probabilities, five probabilities for five exits would be defined with the sum as 1. As for the 

option for conditions, there are four conditions (0 to 3) to be manipulated. The AnyLogic would 

evaluate the four conditions sequentially, one by one, when an agent arrives. If condition 0 is 

true, the agent selects the first option linked to condition 0. Otherwise, condition 1 is evaluated, 

etc. If all four conditions are false, the agent exits via the last exit automatically.  

The first alternative model was designed for the evacuation policy of equal distribution, 

namely, in which situation passengers would choose each of the three doors at an equal 

probability. In other words, the probability of each gate chosen by each passenger, known as one 

agent in the simulation, was designed to be equal. For the five probabilities in this mode, three 

selections representing the three available doors were set as 1.0 / 3 identically, and the rest two 

probabilities were set as zero. The function of randomization in AnyLogic would allow the 
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system with variance in assigning passengers, which means even under equal probability, each 

door might not have the equal number of passengers choosing it. 

The second alternative model was designed to manipulate the agents’ decision when 

choosing exits, following the rules of “first arrive, first serve.” As queues could appear at exit 

doors during evacuations, the researcher was intended to produce a policy with expected higher 

efficiency, instructing each passenger to choose the exit with the shortest queue when he or she 

makes the decision. The mode of conditions was applied to realize this policy, manipulating 

passengers’ choices. The scenario of choosing doors among Door 2, 3, and 4 could be explained 

as an example. The system would evaluate the conditions for each of the passengers who just 

arrived on the first floor. For the four conditions, the first two, condition0 and condition1, were 

both sets as “false,” so that the system would evaluate the third and fourth conditions. The 

condition2 would be coded as below:  

pedGoTo2.size() <= pedGoTo3.size() && pedGoTo2.size() <= pedGoTo4.size() 

“pedGoTo2.size()” indicated the number of passengers who had already chosen Door 2 to 

evacuate at the time when the next passenger arrived on the first floor. This number would 

include both the passengers that are queuing at Door 2 and the passengers that are on their way to 

Door 2. Passengers that had already successfully evacuated via Door 2 were not counted in this 

calculation. Similarly, the pedGoTo3.size() and pedGoTo4.size() indicated the number of 

passengers that had already chosen Door 3 and Door 4 to evacuate respectfully. The condition2 

formed of two formulas represented the order to let the system compare the number of 

passengers chosen to Door 2 with that of Door 3 and Door 4. Condition2 would only be 

considered as true if the passengers chose Door 2 was the least among the three doors, indicating 
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the shortest queue. In that case, this specific passenger would choose Door 2 to evacuate. 

Otherwise, the system would consider the condition2 as false and continue evaluating 

condition3, which was set as below: 

pedGoTo3.size() <= pedGoTo2.size() && pedGoTo3.size() <= pedGoTo4.size() 

The condition3 worked similarly with condition2, making the system to determine if the 

queue for Door 3 was the shortest. If the result turns out to be false, the system will proceed with 

the last selection as default as all four conditions were calculated as false.  

The conditions discussed above apply to the scenario in which Door 2, Door 3, and Door 

4 were available. In other scenarios that different doors were available, the conditions were 

edited accordingly. All the output for the three scenarios were collected to proceed with data 

analysis. 

While agents were simulated to choose gates, the “pedAreaDescriptor” function was 

deployed at each of the exiting areas. For each exit, an area was drawn in front of the exit in the 

shape of green dotted polygons shown below in Figure 17. Within these areas, agents were 

designed with walking speed and throughput rate to simulate the congestion of exits. The 

walking speed was limited below the running speed because of the observed congestion within 

the areas. The throughout rate was limited as two people per second to define only up to two 

people to evacuate at the same second. The reason for the setting was the limited width of each 

door. 
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Figure 17. The layout of the first floor with Area Descriptors. Adapted from Daytona 

Beach International Airport. Retrieved February 28, 2017, from 

http://www.flydaytonafirst.com/airport-information/terminal-layout.stml 

This study was manipulated as a 3 (number of passengers: 120, 600, 1000) * 2 

(evacuation policy: equal distribution, shortest queue) experimental design with six different 

levels of setting in terms of the number of passengers and the evacuation policies. Besides the six 

levels of setting, the simulation was multiplied 40 times for each of the scenarios based on 

different choices of gates. In general, 720 runs were simulated by the researcher. 

Sources of data. The data inputted in this study was collected from three sources. Real 

observation collected an average number of arriving passengers for each observed flight, as well 

as the time, is taken by passengers to leave the airport terminal building. The website of airport 

KTAR supported the constructional design of the terminal and the weekly flight schedules. The 

terminal map showed six gates in the terminal. Additionally, the information on the airport’s 
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website also helped the researcher to make a forecast for future passenger growth. The researcher 

was able to design passenger settings into three levels by combining the two sources of data. 

In addition to the observation and the airport’s website, the previous studies also 

supported the researcher with operational data, including walking speed, running speed, and the 

average speed on escalators and stairs. With the data mentioned, the researcher was able to adjust 

the evacuations into normal and emergency settings. The output as evacuation time was 

measured in seconds by AnyLogic. 

The validation of models was important, because the simulation was supposed to perform 

in a way that was close enough to reality. A baseline model for validation was built to simulate 

the passengers’ normal evacuation process. The data used for validation were referred from 

observation on airport evacuation from Case study 1. Case study 1 observed passengers’ 

evacuation for non-emergency. Based on the data, Case study 2 compared the time taken by the 

passengers in reality and the time taken in the simulation of the baseline model.  

Treatment of data. In this study, the researcher made numbers of manipulations 

regarding the choices of exit doors and the policies or evacuation. The manipulation for the 

evacuation policies and the number of passengers were treated as two independent variables, and 

the total evacuation time measuring from the first arriving passenger appear at the gate on the 

second floor after debarking to the last passenger leaving the terminal was recorded as the 

dependent variable. Each scenario was simulated multiple times to collect the output.  

After the data output from each run of the simulation was recorded, the researcher 

exports the data into an Excel file. The Excel file was split into three groups based on the three 
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scenarios, which were the availability of (1) Door 2, Door 3, & Door 4; (2) Door 3, Door 4, & 

Door 6; and (3) Door 4, Door 5, & Door 6 for passengers to evacuate the terminal building. To 

conduct the statistical analysis, the researcher imported the Excel file into the SPSS, and 

statistical analysis was applied to compare the means and variances among all groups. 

For the validation of the baseline model, a t-test was utilized to examine the null 

hypothesis, which was that there was no significant difference between the mean of observed 

evacuation time and the evacuation time of the baseline model. As the study was conducted in 

the number of passengers of three levels and two kinds of evacuation policies, a 3 (number of 

passengers: 120, 600, 1000) x 2 (evacuation policies: equal distribution, shortest queue) two-way 

between-subject ANOVA test was performed to examine if there was significant difference of 

the evacuation times among respect experimental settings. The two null hypothesizes for this 

study were: 1) there was no significant difference among the evacuation times in three levels of 

amounts of passengers; 2) there was no significant difference among the evacuations times 

between the two evacuation policies. An alpha level of 0.05 was used to examine if the 

difference was significant or not.  

In addition to the two independent variables, the choices of doors were also taken into 

consideration to compare the evacuation plans better. The researcher generated three sets of 

choices of exit doors and compared the evacuation times within these three scenarios. The data 

collected under the three scenarios using different exit doors were then analyzed with a one-way 

ANOVA in SPSS. This factor of choices of doors was not a concentration of this study, but the 

researcher would be able to compare different situations that could happen in an emergency with 

the help of data comparison. 
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Results 

After the implementation of the methods discussed in Chapter III, the researcher was able 

to collect the records of the dependent variables by running multiple simulations. Taken the data 

into SPSS, the results are presented in this chapter. 

Results of validation. Based on the data from Case study 1, the mean of the evacuation 

time from the observation was 621 seconds. Taken the behavioral data into the designation, the 

researcher ran 20 simulations and received the statistical data shown in Table 15. Within the t-

test between the observed value and the sample means, there were approved without a significant 

difference between the baseline value and the experimental model, t (19) = .766, p = .453, the p-

value is larger than 0.5, the null hypothesis cannot be rejected. Thus, the baseline model was 

validated. 

Table 15 

Results of Validation 

 

Test Value = 621 

t df Sig. (2-tailed) 
Mean 

Difference 

95% Confidence Interval of the 
Difference 

Lower Upper 
Simulation 
time 

.766 19 .453 .65000 -1.1258 2.4258 

 

Descriptive statistics. The dependent variable for this study was the evacuation time for 

all the passengers. Table 16 showed the descriptive statistics among three levels of passenger 

numbers and two kinds of evacuation policies from the experimental model. 
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Table 16 

Descriptive Statistics for the Number of Passengers and the Evacuation Policies 

 
Number_Passengers Evacuation_Policy Mean Std. Deviation N 
120 Equal Distribution 291.1671 10.94224 120 

Shortest Queue 282.9029 9.16033 120 
Total 287.0350 10.88768 240 

600 Equal Distribution 390.8942 21.05556 120 
Shortest Queue 374.6092 9.40645 120 
Total 382.7517 18.20369 240 

1000 Equal Distribution 499.9400 15.82835 120 
Shortest Queue 486.2433 12.19808 120 
Total 493.0917 15.68201 240 

Total Equal Distribution 394.0004 86.94319 360 
Shortest Queue 381.2518 83.89878 360 
Total 387.6261 85.61308 720 

 

Hypothesis testing. The two independent variables as the number of passenger and the 

evacuation policies were checked independently of each other. The null hypothesis was that there 

were no significant differences among the evacuation times in different levels of the number of 

passengers for each of the evacuation policies.  

A 3 (Number of Passengers: 120, 600, 1000) * 2 (Evacuation Policy: Equal Distribution, 

Shortest Queue) two-way between-subject ANOVA was conducted on evacuation times. The 

results as in Table 17 showed the effect of number of passengers was significant, F (2, 714) = 

13492.361, p < .05; the effect of evacuation policy was significant, F (1, 714) = 154.680, p < .05; 

and the effect of number of passenger * evacuation policy was significant as well, F (4, 714) = 

5.316, p < .05. Therefore, the null hypothesis was rejected. 
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Table 17 

Tests of Between-subjects Effects in the Two-way Between-subject ANOVA 

Source 
Type III Sum of 

Squares df Mean Square F Sig. 
Partial Eta 
Squared 

Corrected Model 5134941.442a 5 1026988.288 5430.007 .000 .974 
Intercept 108182881.451 1 108182881.451 571996.584 .000 .999 
Number_Passengers 5103675.660 2 2551837.830 13492.361 .000 .974 
Evacuation_Policy 29254.875 1 29254.875 154.680 .000 .178 
Number_Passengers * 
Evacuation_Policy 

2010.906 2 1005.453 5.316 .005 .015 

Error 135040.277 714 189.132    
Total 113452863.170 720     
Corrected Total 5269981.719 719     
 

a. R Squared = .974 (Adjusted R Squared = .974) 

 

Number of passengers. The null hypothesis stated that there was no significant 

difference in evacuation time among the three levels of passenger numbers. The results shown in 

Table 18 indicated that the mean evacuation time at the passenger number of 120 (M = 287.035, 

SD = 10.888) was significantly lower than the mean evacuation time at the passenger number of 

600 (M = 382.752, SD = 18.204) and passenger number of 1000 (M = 493.092, SD = 15.682), 

with p-value of p < 0.05. Therefore, the null hypothesis was rejected. 

Table 18 

Pairwise Comparison Between Number of Passengers 

 

(I) Number_ 
Passengers 

(J) Number_ 
Passengers 

Mean 
Difference  

(I-J) Std. Error Sig.b 

95% Confidence Interval for 
Differenceb 

Lower Bound Upper Bound 
120 600 -95.717* 1.255 .000 -98.721 -92.712 

1000 -206.057* 1.255 .000 -209.061 -203.052 
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600 120 95.717* 1.255 .000 92.712 98.721 
1000 -110.340* 1.255 .000 -113.345 -107.335 

1000 120 206.057* 1.255 .000 203.052 209.061 
600 110.340* 1.255 .000 107.335 113.345 

Based on estimated marginal means 
*. The mean difference is significant at the 5% level. 
b. Adjustment for multiple comparisons: Sidak. 
 

 

Evacuation policies. The null hypothesis was that there is no significant difference in 

evacuation time between the equal distribution policy and the shortest queue policy. The results 

shown in Table 19 indicated that the mean evacuation time for the equal distribution policy 

(M=394.000, SD = 86.943) was significantly higher than the evacuation time of the shortest 

queue policy (M=381.252, SD = 83.898), with a p-value of p <0.05. As a result, the null 

hypothesis was rejected. 

Table 19 

Comparison Between Evacuation Policies 

 
(I) 

Evacuation_P

olicy 

(J) 

Evacuation_P

olicy 

Mean 

Difference (I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

Equal 

Distribution 

Shortest 

Queue 

12.749* 1.025 .000 10.736 14.761 

Shortest 

Queue 

Equal 

Distribution 

-12.749* 1.025 .000 -14.761 -10.736 

Based on estimated marginal means 

*. The mean difference is significant at the 5% level. 

b. Adjustment for multiple comparisons: Sidak. 
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Relationship between the number of passengers and the evacuation policies. Table 20 

showed the pairwise comparisons for the interaction of the two independent variables. The SPSS 

output showed that at the passenger number of 120, the mean evacuation time (in minutes) for 

the equal distribution policy (M = 291.167, SD = 10.942) was significantly longer than the mean 

evacuation time for the shortest queue policy (M = 282.903, SD = 9.160); at the passenger 

number of 600, the mean evacuation time for the equal distribution policy (M = 390.894, SD = 

21.056) was significantly longer than the mean evacuation time for the shortest queue policy (M 

= 374.609, SD = 9.406); at the passenger number of 1000, the mean evacuation time for the 

equal distribution policy (M = 499.940, SD = 15.828) was significantly longer than the mean 

evacuation time for the shortest queue policy (M = 486.243, SD = 12.198). Figure 18 indicated 

the reflections of the two independent variables on the evacuation times that the growing number 

of passengers increased the evacuation time, and it also showed that the equal distribution policy 

cost longer evacuation time on each level of the passenger numbers. 
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Figure 18. Evacuation time based on number of passengers 

 
Table 20 

Pairwise Comparison Between the Number of Passengers and the Evacuation Policies 

Dependent Variable:  Evacuation_Time  

Number_Pas
sengers 

(I) 
Evacuation_
Policy 

(J) 
Evacuation_
Policy 

Mean 
Difference (I-

J) Std. Error Sig.b 

97.5% Confidence Interval for 
Differenceb 

Lower Bound Upper Bound 
120 Equal 

Distribution 
Shortest 
Queue 

8.264* 1.775 .000 4.276 12.252 

Shortest 
Queue 

Equal 
Distribution 

-8.264* 1.775 .000 -12.252 -4.276 
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600 Equal 
Distribution 

Shortest 
Queue 

16.285* 1.775 .000 12.297 20.273 

Shortest 
Queue 

Equal 
Distribution 

-16.285* 1.775 .000 -20.273 -12.297 

1000 Equal 
Distribution 

Shortest 
Queue 

13.697* 1.775 .000 9.709 17.685 

Shortest 
Queue 

Equal 
Distribution 

-13.697* 1.775 .000 -17.685 -9.709 

Based on estimated marginal means 
*. The mean difference is significant at the 5% level. 

b. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 

 

Choices of gates. To make the simulation fitted in more realistic scenarios, the researcher 

conducted three methods in choosing gates: Door 2, 3, & 4; Door 3, 4, & 6; and Door 4, 5, & 6. 

To compare the three scenarios in the simulation, a one-way between-subject ANOVA was 

conducted to compare the performance in different choices of gates. 

The null hypothesis was that there was no significant difference between the different 

choices of gates. With the alpha-level set at .05, the one-way between-subject ANOVA was 

significant, F (2, 717) = 188.225, p < .05, 2 = .01. The equal variance post hoc test, Sidak, 

shown in Table 21, indicated that the mean evacuation time for the door choice of Door 3, 4, & 6 

(M = 375.470, SD = 81.591) was significantly lower than the mean evacuation time for the door 

choice of Door 4, 5, & 6 (M = 394.385, SD = 91.636), and significantly lower than the mean 

evacuation time for the door choice of Door 2, 3, & 4 (M = 393.023, SD = 82.293). 

Table 21 

Multiple Comparisons Between Choices of Gates 

Dependent Variable:  Evacuation_Time  

Sidak  
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(I) 
Door_Choices 

(J) 
Door_Choices 

Mean Difference 
(I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 
234 346 17.55208 7.78650 .072 -1.0836 36.1877 

456 -1.36292 7.78650 .997 -19.9986 17.2727 

346 234 -17.55208 7.78650 .072 -36.1877 1.0836 

456 -18.91500* 7.78650 .045 -37.5507 -.2793 

456 234 1.36292 7.78650 .997 -17.2727 19.9986 

346 18.91500* 7.78650 .045 .2793 37.5507 

 
*. The mean difference is significant at the 0.05 level. 

Discussion 

Number of passengers. The number of passengers was considered as a factor affecting 

the evacuation time. As three levels were designed for this factor, the result in evacuation times 

reflected that the higher level of the number of passengers led to significantly longer time to 

complete the evacuation. The result came without surprise, not only because the increase in 

passenger numbers led to longer process, but also the higher number of passengers was more 

likely to cause congestions while evacuating.  

More passengers would certainly increase the total evacuation time, as the number of 

units who need to proceed at the exits increased. Through the researcher’s observation during the 

simulation, when there were 120 passengers in the system, there were not obvious congestions; 

while the simulation for 1000 passengers tended to cause much more congestions than that of 

600 passengers, this can be easily observed from the simulation model through AnyLogic. The 
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congestion reduced the evacuation efficiency; it is a significant factor considered in the 

simulation because it made the simulation more applicable to the real scenarios.  

Evacuation policies. The evacuation performance was evaluated under two policies: the 

equal distribution among exits policy and the shortest queue assignment policy. Under the equal 

distribution policy, passengers choose each gate with an equal probability, representing the 

scenario that evacuee choose the exit in a random manner; and for the second policy, passengers 

were assigned to the exit that had the shortest queue when they arrive at the first floor, 

representing the scenario that there is someone there guiding the evacuation process, in order to 

balance the queue length among the different exits. The evacuation time for the equal 

distribution was found to be significantly longer than the shortest queue policy, showing the 

latter policy had higher efficiency in evacuations, demonstrating the effects of having guidance 

for the exit assignment during the evacuation process. Furthermore, comparing the shortest 

queue policy to the equal distribution one, it was found that more passengers were assigned to 

the closer gates, as the queue length reduced faster in the closer gate, making advantages of the 

shorter distance for the evacuation. The result echoes with the researcher’s expectation that the 

shortest queue policy guided by authority presents a more efficient way to evacuate during 

emergencies.  



 

 Multi-scale models for transportation systems under emergency 112 

 

Figure 19. End of shortest queue evacuation. Adapted from the Screenshot from 

AnyLogic. 

Figure 19 shown above, was captured at the end of a simulation run with 1000 passengers 

using the shortest queue policy, and the gate chosen for this scenario was Door 4, 5 & 6. It can 

be seen that the passengers at Door 4 were about to finish evacuating when there were still 

several passengers that were on their way to Door 5 and Door 6. This situation was caused by the 

time when passengers made a choice and the different distances from the escalator to each gate. 

Passengers were designed to decide once they arrived on the first floor, choosing the door that 

had the least people queue at that moment. Moreover, as each of the gates was at different 

distances from the escalator, the time taken for the passengers to walk from the escalator was 

different. The two reasons mentioned could explain the situation shown above. Because the time 

takes to Door 4 was shorter than the time taken to Door 5 and Door 6, passengers who had 

chosen Door 5 and Door 6 would be still halfway to their destination when the passengers chose 

Door 4 had already successfully evacuated. Since passengers were not allowed to change their 

assigned exits during the evacuation, the queue length changed quickly as the evacuation process 
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occurs. For a situation like this, especially involved more people, a more flexible policy should 

be considered to accommodate the dynamic changes in the situation. 

Relationship between the number of passengers and the evacuation policies. The 

interaction between the number of passengers and the evacuation policies can be seen from 

Figure 20. Increased number of passengers led to the increase of evacuation time, and the 

shortest queue policy acted more efficiently than the equal distribution. 

 

Figure 20. Evacuation times based on the evacuation policies. 

Choices of gates. In this study, three plans for choosing the gates were conducted and 

compared. Results indicated that among the three plans (Door 2, 3, & 4; Door 3, 4, &6; Door 4, 



 

 Multi-scale models for transportation systems under emergency 114 

5, & 6), the plan of choosing Door 3, 4, & 6 performed better than both Door 2, 3, & 4 and Door 

4, 5, & 6. Comparing the plans choosing Door 3, 4, & 6 and Door 2, 3, &4, the distance to Door 

6 was shorter than Door 2, causing less evacuation time. Also, the fact that Door 2 and Door 3 

were both on the left side of the terminal could cause congestion that makes the process even 

longer. The reasons why choosing Door 4, 5, & 6 costs longer time for evacuation were 

supposing the same as mentioned: all doors have different distance to the starting point, Door 5 

was farther than Door 3, and all passengers evacuating to the right side of the terminal could 

cause congestion on the way to exits. Thus, the plan of choosing Door 3, 4, & 6 was 

recommended with the best performance among other plans in this study. The difference of the 

exit distances added more complexity to the situation, which makes a single static policy not 

suitable for the optimization of the evacuation time. A more effective policy might be more 

proper to account for the travel distance of the exits. 

Case study 3 

Research Question and Hypothesis 

The purpose of this study was to investigate the effect of group travel and instructions on 

the overall evacuation efficiency. This would help people understand how these two factors 

influence the efficiency of an evacuation, which, in turn, lead to better policy and decision-

making process for this situation. By understanding these effects, the authorities would have a 

clearer picture of the whole evacuation program, making appropriate proactive evacuation plans.  

Instructions to the closest exits from authorities might help people to find the most 

efficient way to evacuate from the emergencies. The study focused on two factors of evacuation 
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efficiency. One is group travel, and the other is instructions. When an emergency occurred, 

people might fail to find the fastest and the closest route to evacuate. At that time, instructions of 

closest exits from authorities might help people to find the most efficient way to evacuate the 

dangerous situations. This study addressed the questions of whether group travel influences the 

efficiency of evacuation and whether instructions are affecting the efficiency of evacuation. 

Therefore, the first hypothesis (H01) of the study was that group travel actions would not 

significantly affect the evacuation time. The second hypothesis (H1) was that instructions would 

not significantly influence the evacuation time. A two-way ANOVA analysis was applied to test 

the above three hypotheses, with a significant level set at 5%.  

Methodology 

Research approach. This study was conducted to analyze the airport evacuation process 

under emergent situation at a small local airport using a simulation model. Agent-based 

simulation, Anylogic was used to develop the baseline model and the experimental model. SPSS 

was used to conduct statistical analysis. 

In this study, the baseline model was built to simulate the normal evacuation process for 

the current situation for validation purposes. In the normal evacuation process, pedestrians were 

assumed to evacuate the airport building individually. Under normal conditions, there are no 

connections between pedestrians. The average rate of moving speed of pedestrians was set as a 

constant. The walking speed of pedestrians used in the baseline model was from 1.08 to 1.27 m/s 

(Galea et al., 2006), following a normal distribution, which was based on the previous studies. In 

the experimental model, this average moving speed of pedestrians was not changed; however, 
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group travel behaviors and instructions were added to the validated baseline model as the 

independent variables. The dependent variable both the baseline model and the experimental 

models was the time of the evacuation process (in seconds). Case study 1 validated the baseline 

model by comparing the total time of normal evacuation generated by Anylogic to the actual 

leaving time of passengers observed in the small local airport. The experimental model was 

developed based on the validated baseline model, and two-way analysis of variance (ANOVA) 

was utilized to investigate the effect of group behaviors and instruction on the evacuation time. 

Significant level was set at 5%.  

This study applied a 2 × 3 experimental design. The procedures of this study were 

designed based on the activities taken by pedestrians in a small local airport when an emergency 

occurs.  

The procedures of this study included 7 steps, which covered the process from when 

passengers evacuated the aircraft and went to the gates, to the point where every pedestrian got 

out the small local airport. These steps included; a) generate group and travel in different group 

size, b) get off the aircraft and enter the terminal through aerobridges on the second floor, c) go 

to the escalator or stairs connecting the first floor and the second floor, d) choose to use escalator 

or stairs to get down to the first floor, e) get down to the first floor by the choice they made, f) 

choose exit from all available doors, g) leave the building through the door they chose. Figure 21 

and Figure 22 illustrate the floor configurations for the airport. 
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Figure 21. The second floor of the terminal. Retrieved February 28, 2017, from 

http://www.flydaytonafirst.com/airport-information/terminal-layout.stml 

 
 
 
 

http://www.flydaytonafirst.com/airport-information/terminal-layout.stml
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Figure 22. The first floor of the terminal. Retrieved February 28, 2017, from 

http://www.flydaytonafirst.com/airport-information/terminal-layout.stml 

 
The validation of the baseline model was done Case study 1. The maximum level of the number 

of passengers of this small local airport would be 1000 at the same time from six gates located on 

the second floor. According to Figure 23, six gates were located on the second floor of the 

terminal; pedestrians would run out of the six gates when an emergency occurs. On the first floor 

of the terminal, six exit doors were in different positions of the building. As shown in Figure 23, 

the sort red lines were referring to exit doors that can be used by pedestrians to evacuate from the 

emergency. However, in this study, the researcher was assuming that there was a fire at the point 

of the closest door to the downstairs exit of the escalator. According to Figure 23, the door in the 

middle could not be used. Pedestrians could only use the other 5 doors to evacuate the airport. 

http://www.flydaytonafirst.com/airport-information/terminal-layout.stml
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The independent variable group travel behaviors had three levels. These levels included 

group traveling size of 1, 3, and 6. Group size of traveling pedestrians was set up at the 

beginning of the simulation. It was set at the Ped Source palette in the Pedestrian 

library of Anylogic software. The simulation without group travel behaviors (group size of 1) 

simulated the no group scenario, which is, every pedestrian was evacuating individually. For the 

group travel behaviors simulations, pedestrians moved with each other in different group sizes. 

The group sizes were set at 1 (as the control group), 3, and 6. For a group size of 1, when an 

emergency occurs, pedestrians do not need to wait for anyone and can evacuate as soon as 

possible.  

Another independent variable was instructions. Two levels of the independent variable 

were set in this study, with and without instructions in the evacuation process. Under the without 

instruction condition, when an emergency occurs, pedestrians will randomly choose the exit 

because they may be in a panic situation and lose their situational awareness. For the with 

instruction scenario, an authority was set at the bottom of the escalator in the first floor the 

authority would give pedestrian instructions which way was the most efficient way to exit, which 

is based on the smallest number of people on that exit. This implies that a pedestrian might not 

go the shortest distance.  

When there were no instructions, the pedestrians would choose the exit doors by 

themselves. The probability of choosing each door was set equal to mimic a random selection of 

exits. On Figure 23, the five dotted lines were the evacuate routes on the first floor of the 

terminal of the small local airport. To realize the goal of the equal chance of every exit, 

pedSelectOutput palette was used in the pedestrian library of Anylogic software. There were five 
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exports of a pedSelectOutput palette. The setting of probabilities for each exit was 0.2. The flow 

chart of the baseline model was shown in Figure 23.  

Figure 23. Flow chart of the models without instructions 

 

For the experimental models with group travel behaviors (group size of 1, 3, and 6) and 

without instructions, the same flow chart was used. Compared to individual evacuation (group 

size of 1), the only setting changed was that pedestrians showed up in groups as opposed to 

traveling individually. Also, when they faced several routes to choose, they would make a 

decision together and evacuate together, they would not be separated during the evacuation 

process.  

Another experimental model was without group travel behaviors (group size of 1) and 

with instructions. In this model, pedestrians would choose to the exit randomly (with equal 

probability) to evacuate to the exit doors. With this method, pedestrians would choose the 

shortest way to evacuate from the emergency.  

In models with instructions, because of the setting of the shortest queue available, the 

pedService palette was used to control the pedestrians follow the shortest way to evacuate to, as 
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shown in Figure 24. However, even though there was a setting of the closest queue in the 

pedService palette, it could not be used to realize without instructions because the pedestrians 

would choose only one route to evacuate. Thus, the researcher made five services to realize the 

equal probabilities of choosing evacuate routes. 

Figure 24. Flow chart of the models with instructions 

Finally, the last two experimental models were with group travel behaviors (group size of 

3 and 6) and with instructions. The same flow chart of the model without group travel behaviors 

and with instructions was applied.  

Sources of data. The data used in this study was from previous research. First, the 

walking speed of the pedestrians in this study was set between 1.2 and 1.8 m/s because according 

to Fang et al. (2004), in the emergency evacuation simulation, the passenger’s walking speed 

was uniformed distribute between 1.2 and 1.8 m/s. Next, the number of arriving passengers was 

1000, and the arriving rate of passengers based on the observation from Case study 1. The layout 

of the airport terminal was based on the picture published local airport website.  

In addition to the sources of data mentioned above, the average speed of pedestrians on 

escalator and stairs were also provided by previous studies. For the data collection device, this 

study was collecting the total evacuation time from when the first passenger emerged on the 
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second floor to when the last passenger left the terminal. The time data could be collected by 

Anylogic software using clock palette.  

Instrument reliability and validity. This study was aiming to simulate the conditions of 

real life. Therefore, the validation of the models was essential. The data used in this study were 

referred from Case study 1 to test the effect of group travel behaviors and instructions on the 

efficiency of evacuation from emergencies. 

Treatment of data. Group travel behaviors and instructions were two independent 

variables in this study. With or without group travel behaviors and with or without instructions 

were manipulated by the researcher. The dependent variable was the time of the whole 

evacuation process. The evacuation process started from when the first passenger appeared at the 

gates, which were located on the second floor of the terminal and ended when the last passenger 

left the terminal. There were six models to be simulated totally, and each model was simulated 

several times to collect the output. The six models were the model without group travel 

behaviors (group size of 1) and with instructions; the model without group travel behaviors 

(group size of 1) and without instructions; the model with group travel behaviors (group size of 

3) and with instructions; the model with group travel behaviors (group size of 3) and without 

instructions; the model with group travel behaviors (group size of 6) and with instructions; the 

model with group travel behaviors (group size of 6) and without instructions; After the 

simulation of each model, the output data was recorded by the researcher and exported to SPSS. 

Statistical analysis was conducted using the SPSS software.  

Results 
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In total, there were six models developed for different conditions, and each model was 

simulated 50 times. The data of the simulations was exported to excel files and converted into 

SPSS. The analysis was done in the SPSS software. Two-way ANOVA was used to test the null 

hypotheses of this study. 

Situation models. At the beginning of the simulation, pedestrians would be assembled on 

the second floor of the terminal because they were getting out of the gates. Figure 25 shows the 

beginning status of the second floor of the terminal building. It was noticed that it was crowded 

at the origin point when the evacuation started, and pedestrians started running to the escalator or 

the stairs. As shown in Figure 26, pedestrians were rushing to the escalator and stairs to evacuate 

from emergencies as soon as possible. When on the escalator, the group still stick together to 

evacuate. For example, if one pedestrian in one group chose to evacuate by stairs, the other 

pedestrians in that group would use stairs to evacuate as well. After arriving at the first floor of 

the terminal, pedestrians started to head towards the exits according to the instruction or not. The 

simulation screenshot was shown in Figure 27. Pedestrians were rushing out from the exits of 

escalator and stairs. When they reached the first floor, they would evacuate through doors of the 

terminal and complete the evacuation.  
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Figure 25. The second floor of simulation. Adapted from the screenshot from AnyLogic. 
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2 Second floor of simulation 

Figure 26. Escalator of the simulation. Adapted from the screenshot from AnyLogic. 

3 Escalator of the simulation 
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Figure 27. The first floor of the simulation. Adapted from the screenshot from AnyLogic. 

Descriptive statistics. The dependent variable of this study was the total time of the 

whole evacuation process. Six models were simulated by the researcher, and the data was 

analyzed in the SPSS software. Table 22 showed the descriptive statistics of the evacuation time 

of six models. In this study, the researcher coded instructions with 1, and 0. 1 represent the 

model with instructions, and 0 represented for the model without instructions.  
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Table 22 

Descriptive Statistics of Total Evacuation time based on Group Size and Instructions 

Dependent Variable:  Total time  
Groupsize Instruction Mean Std. Deviation N 
1 0 2115.528 47.1961 50 

1 2060.360 34.7588 50 
Total 2087.944 49.6894 100 

3 0 2555.320 29.4845 50 
1 2489.396 17.4281 50 
Total 2522.358 40.9644 100 

6 0 2702.674 16.2312 50 
1 2515.472 21.2998 50 
Total 2609.073 95.9405 100 

Total 0 2457.841 252.4488 150 
1 2355.076 210.9045 150 
Total 2406.458 237.8520 300 

 

As shown in Table 22, the mean evacuation time of the model of without group and 

without instructions was 2115.5 seconds, which equals to 35 minutes and 15 seconds. As seen in 

Table 22, when the researchers considered group travel behavior, the average evacuation time 

had increased from 2115 seconds to 2555 seconds, and for the model of a group size of 6, the 

average evacuation time had reached 2700 seconds and more.  

Hypothesis testing. The two independent variables of this study were group travel 

behaviors and instructions. There were three levels of group size, and two levels of instructions 

were tested. The three null hypotheses of this research were that H01: there was no significant 

difference in evacuation time among group size of 1, 3, and 6, H02: there was no significant 

difference in evacuation time between with and without instructions, and H03: there was no 

interaction between group travel behaviors and instructions. A two-way ANOVA test was 

conducted. The result of the test was shown in Table 23. As shown in Table 23, with the alpha 

level set at .05, the effect of group travel behaviors was found significant with F (2, 294) = 
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8783.771, and p < .01; the effect of instructions was also found significant with F (1, 294) = 

892.301, and p < .01; and the effect of group travel behaviors * instructions was found 

significant, with F (4, 294) = 151.417 and p < .01. Thus, all three null hypotheses were rejected.  

Table 23 

Test Results of Between-Subjects Effects 

Dependent Variable:  Total time  

Source 
Type III Sum of 

Squares df Mean Square F Sig. 
Partial Eta 
Squared 

Corrected Model 16654533.412a 5 3330906.682 3752.535 .000 .985 
Intercept 1737312513.021 1 1737312513.021 1957222.903 .000 1.000 
Groupsize 15593681.642 2 7796840.821 8783.771 .000 .984 
Instruction 792043.254 1 792043.254 892.301 .000 .752 
Groupsize * Instruction 

268808.516 2 134404.258 151.417 .000 .507 

Error 260966.637 294 887.642    
Total 1754228013.070 300     
Corrected Total 16915500.049 299     

 

Group travel behaviors. The null hypothesis of the effect of group travel behaviors was 

that there was no significant difference in evacuation time among a group size of 1, 3, and 6. 

results in Table 22, Table 24, and Table 25 showed that the mean evacuation time of the model 

of group size of 1 (M = 2087.944, SD = 49.6894) was significantly lower than the mean 

evacuation time of the model of group size of 3 (M = 2522.358, SD = 40.9644) and group size of 

6 (M = 2609.073, SD = 95.9405), and the mean evacuation time of the model of group size of 6 

was significantly larger than the mean evacuation time of the model of group size of 1 and group 

size of 3, p <.01. Thus, the null hypothesis was rejected. There was a significant difference in 

evacuation time among all group sizes of 1, 3, and 6.  

Table 24 
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Estimates among Group Size 

Dependent Variable:  Total time  

Groupsize Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 
1 2087.944 2.979 2082.080 2093.808 

3 2522.358 2.979 2516.494 2528.222 

6 2609.073 2.979 2603.209 2614.937 

 
 
Table 25 

Pairwise Comparisons among Group Size 

Dependent Variable:  Total time  

(I) 
Groupsize (J) Groupsize 

Mean Difference (I-
J) Std. Error Sig.b 

95% Confidence Interval for 
Differenceb 

Lower Bound Upper Bound 
1 3 -434.414* 4.213 .000 -444.559 -424.269 

6 -521.129* 4.213 .000 -531.274 -510.984 

3 1 434.414* 4.213 .000 424.269 444.559 

6 -86.715* 4.213 .000 -96.860 -76.570 

6 1 521.129* 4.213 .000 510.984 531.274 

3 86.715* 4.213 .000 76.570 96.860 

Instructions. The null hypothesis of the instructions was that there was no significant 

difference in evacuation time between with and without instructions. The results in Table 22 and 

Table 26 indicated that the mean evacuation time of model with instructions (M = 2355.076, SD 

= 210.9045) was significantly lower than the mean evacuation time of model without instructions 

(M = 2457.841, SD = 252.4488), p <.01. As a result, the null hypothesis of instructions was 
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rejected. There was a significant difference in evacuation time between with and without 

instructions.  

Table 26 

Estimates between Instructions 

Dependent Variable:  Total time  

Instruction Mean   Std. Error 

95% Confidence Interval 

   Lower Bound    Upper Bound 
0 2457.841 2.433 2453.053 2462.628 
1 2355.076 2.433 2350.288 2359.864 

 

Relationship between group travel behaviors and instructions. The null hypothesis 

stated that there was no relationship between group travel behaviors and instructions. The results 

in Table 22 and Table 27 indicated that for group size of 1, the mean evacuation time of the 

model with instructions (M = 2060.360, SD = 34.7588) was significantly lower than the model 

without instructions (M = 2115.528, SD = 47.1961). For the group size of 3, the mean evacuation 

time with instructions (M = 2489.396, SD = 17.4281) was significantly lower than the mean 

evacuation time without instructions (M = 2555.320, SD = 29.4845). For the group size of 6, the 

mean evacuation time with instructions (M = 2515.472, SD = 21.2998) was significantly lower 

than the mean evacuation time without instructions (M = 2702.674, SD = 16.2312), p < .01. 

Therefore, the null hypothesis was rejected. The larger the group size was, the longer the 

evacuation time would be taken by pedestrians to evacuate from emergencies. Instructions could 

reduce the evacuation time for pedestrians. There was an interaction between group travel 

behaviors and instructions. Instruction works the best for the largest group size, resulting in a 

significant reduction of the evacuation time. As shown in Figure 28, the plot indicated that there 
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was a positive interaction between two independent variables, especially obvious when the group 

size increased to 6.  

Table 27 

Pairwise Comparisons Based on Estimated Marginal Means 

Dependent Variable: Total time 

Group size Instruction Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 
1 0 2115.528 4.213 2107.236 2123.820 

1 2060.360 4.213 2052.068 2068.652 
3 0 2555.320 4.213 2547.028 2563.612 

1 2489.396 4.213 2481.104 2497.688 
6 0 2702.674 4.213 2694.382 2710.966 

1 2515.472 4.213 2507.180 2523.764 
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Figure 28. Plot chart of independent variables and marginal means 

Further analysis of results. According to Table 28, the result of levene’s test of equality 

of error variances was significant, which means the homogeneity assumption was violated. 

Therefore, even though the two-way ANOVA was so robust that the results of the statistical 

analysis could be accepted, a separate one-way ANOVA was conducted to confirm the ANOVA 

results and to make the results of the study more persuasive. For this reason, t Welch and Brown-

Forsythe test for both independent variables were conducted.  

Table 28 

Levene’s Test of Equality of Error Variances 
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Dependent Variable: Total time 

F df1 df2 Sig. 

31.570 5 294 .000 

 

As shown in Table 29 and Table 30, the result of the one-way ANOVA test of group size 

showed there was a significant difference in total time among different group sizes. The results 

of welch and Brown- Forsythe showed a similar result. This result is further illustrated in Figure 

29. 

Table 29 

ANOVA Test of Group Travel Behaviors 

Dependent variable: Total time  
Sum of Squares df Mean Square F Sig. 

Between Groups 792043.254 1 792043.254 14.639 .000 
Within Groups 16123456.800 298 54105.560   
Total 16915500.050 299    
 

Table 30 

Robust Tests of Equality of Means 

Dependent Variable: Total time 

 Statistica df1 df2 Sig. 
Welch 14.639 1 288.859 .000 
Brown-Forsythe 

14.639 1 288.859 .000 

a. Asymptotically F distributed. 
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Figure 29. Mean plot of group size 

 Table 31 and Table 32 shows further tests for the effect of instructions on the efficiency 

of evacuation. The one-way ANOVA test showed the significant result of instructions. Also, the 

Welch and Brown-Forsythe showed significant results, which is illustrated in Figure 30. 

 After testing both two independent variables of this study separately, it was confirmed the 

results from the previous ANOVA. The results of this study indicated that the group travel 

behaviors could decrease the efficiency of evacuation during emergencies, and the larger the 

group size, the slower the evacuation was. Instructions were also affecting the efficiency of 

evacuation during emergencies, and instructions could increase the efficiency of the evacuation. 
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There was an interaction between group travel behaviors and instructions on evacuation 

efficiency during emergencies; instruction helps to reduce the evacuation time more at the bigger 

group size level.  

Table 31 

ANOVA Test of Instructions 

Dependent Variable: Total time 

 Sum of Squares df Mean Square F Sig. 
Between Groups 792043.254 1 792043.254 14.639 .000 
Within Groups 16123456.800 298 54105.560   
Total 16915500.050 299    

 

Table 32 

Robust Tests of Equality of Means 

Dependent Variable: Total time 

 Statistica df1 df2 Sig. 
Welch 14.639 1 288.859 .000 
Brown-Forsythe 14.639 1 288.859 .000 

 

 

 



 

 Multi-scale models for transportation systems under emergency 136 

 

Figure 30. Mean plot of instruction 

Post hoc tests. Post hoc tests were conducted to test effect for different pairs of the group 

sizes. Results of Post hoc analysis was presented in Table 33; it was found that the difference in 

evacuation time between all three pairs of a group size of 1 and 3 were significant.  

Table 33 

Post Hoc Tests 

Dependent Variable: Total time 

Games-Howell  

(I) Groupsize (J) Groupsize 
Mean 

Difference (I-J) Std. Error Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 
1 3 -434.4140* 6.4398 .000 -449.626 -419.202 

6 -521.1290* 10.8045 .000 -546.708 -495.550 
3 1 434.4140* 6.4398 .000 419.202 449.626 

6 -86.7150* 10.4320 .000 -111.439 -61.991 
6 1 521.1290* 10.8045 .000 495.550 546.708 

3 86.7150* 10.4320 .000 61.991 111.439 
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Discussion 

Group travel behaviors. Group travel behaviors were considered as one of the essential 

factors that influencing the efficiency of evacuation during emergencies. Three levels of group 

travel behaviors were investigated in this study. The results indicated that the higher the number 

of the group size, the less efficient of the evacuation, as measured by the evacuation time. There 

was a significant difference in evacuation time among different group sizes. The larger the group 

size was, the more likely to have congestion during the evacuation process. 

Additionally, if the group size was large, people needed to wait for their groupmates to 

evacuate together. Compared to evacuate individually, evacuating in the group increased the total 

time of each person in the group because of the waiting process. Therefore, the total evacuation 

time of large group sizes was significantly longer than the small group size.  

The effect of group size can also be observed visually from the simulation animation. 

Through the observation of simulations, during the running of the simulation of a group size of 1, 

it was observed that there were only small congestion groups at the exit doors. However, when 

the group size increases to 6, much more large congestion groups appeared at each exit door after 

pedestrians rushed to the doors. The congestions significantly increased the evacuation time. 

This also explains that group travel behavior was a significant factor that influencing the 

efficiency of evacuation during emergencies and could be applied to real life.  

Instructions. Two levels of instructions were investigated in this study. The results 

showed that instructions have a significant influence on the overall efficiency of evacuation 

during emergencies. Instructions increase the efficiency of evacuation. The reason was that no 



 

 Multi-scale models for transportation systems under emergency 138 

matter how large the group size, the instructions still could make a difference in the efficiency of 

evacuation during emergencies.  

Additionally, although the results demonstrated that there was a significant difference in 

evacuation time between with and without instructions, some exception could occur in the 

simulations. As shown in Figure 31, pedestrians were congested at the doors on the right side. 

However, the doors at the left side were empty. The reason for this unbalanced queue was that 

the pedestrians were choosing evacuation door at the point of the exit of the escalator or stairs. 

After deciding which way to go, it was assumed that pedestrians could not change anymore, 

which cause congestion at the doors sometimes, especially for larger group sizes. Another reason 

for this phenomenon was that the distance of each evacuation route was different. When the 

pedestrians decided which route to evacuate, they had taken different time to get to the doors 

they chose. Even though the queue the pedestrians chose was the shortest at that time, the 

distance they had to go through might not be the best one.  

Figure 31. Congestion at the doors. Adapted from the screenshot from AnyLogic. 
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Relationship between group travel behaviors and instructions. When the group size 

grew, the total evacuation time increased at the same time. However, instructions could increase 

the efficiency of evacuation. The reason was that no matter how large the group size, the 

instructions still could make a difference in the efficiency of evacuation during emergencies. 

When pedestrians arrived at the exits of the escalator and stairs, the authorities would give 

pedestrians the instructions about the shortest queue at that time, and the same group would 

evacuate through the same route, which was the shortest queue at that time. Therefore, even 

though the group size was large, they would go to the same exit door when evacuating from the 

terminal. The effect of instruction is more evident for larger group sizes (6), as in this group size, 

it is more likely to cause imbalanced exit queue length. Having an instruction will help to reduce 

this imbalance among exits and facilitate the evacuation process. 

Case study 4 

Research Question 

Pedestrian crowds are commonly observed in all public locations offering entertainment, 

transportation, social or religious activities. The mass gathering of people congregated in limited 

space often elevates the risk of infectious disease spread due to the increased contacts between 

susceptible and infectious individuals. Further, individuals with different levels of vulnerability 

and receptivity due to variations in genetic background and intervention usage often congregate in 

tourist attractions (Wilson, 1995). There is direct evidence for the occurrence of multiple epidemic 

outbreaks in high pedestrian density locations such as transportation hubs, entertainment venues, 

(e.g., theme parks, stadiums) and mass gatherings. Gautret and Steffen (2016) report that 68 cited 
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instances of outbreaks among crowds occurred between 1980 and 2016. Numerous reports deal 

with the spread of diseases like influenza, SARS, and measles during air travel (Centers for Disease 

Control and Prevention, 1983; Mangili & Gendreau, 2005; Olsen et al., 2003). Examples of 

epidemics in entertainment venues include the influenza outbreak in 2002 during the winter 

Olympiad and measles outbreak in Disney World in 2016, resulting in 125 cases (Gundlapalli et 

al., 2006; McCarthy, 2015). Several outbreaks of directly transmitted gastrointestinal and 

respiratory diseases have been reported in religious and social outdoor mass gatherings (Pfaff et 

al., 2010; Verhoef et al., 2008; Zieliński, 2009), international meetings (Botelho-Nevers et al., 

2010; Foo et al., 2009), and concert halls (Evans et al., 2002).  

Disease spread in high pedestrian density locations is inherently a multidisciplinary and 

multiscale problem involving epidemiology and crowd dynamics. Deterministic and stochastic 

epidemiological models, including Susceptible-Infected-Recovered (SIR) models, are practical 

tools for understanding epidemic spread (Anderson & Britton, 2012; Brauer & Castillo-Chavez, 

1995). However, such models do not account for discrete human interactions in pedestrian crowds. 

Computationally intensive agent-based models, e.g. EpiSimdemics, and stochastic models include 

human interactions through behavioral rules but are targeted at modeling simple interactions over 

large populations and geographical areas, rather than evaluating the impact of fine-scale 

interactions (Barrett, Bisset, Eubank, Feng, & Marathe, 2008; Germann, Kadau, Longini, & 

Macken, 2006). Instances mentioned above involve a high density of pedestrians over relatively 

small areas. Modeling non-uniform mixing in such instances and designing strategies for 

mitigation can only be achieved through multiscale modeling involving the combination of 

epidemic modeling with pedestrian crowd dynamics.  
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Understanding pedestrian dynamics and efficient crowd management practices are 

essential to enable efficient flow of the pedestrians, and for meeting safety standards in high 

pedestrian, density environments noted above. Pedestrian crowd management often involves the 

combination of crowd psychology and engineering methods for assessing the capacities of 

corridors, ramps, stairs, and other bottlenecks (National Research Council, 1983; Fruin, 2002). 

While several approaches including cellular automata, fluid flow models have been used for 

modeling pedestrian dynamics, social force models have the advantage of evaluating the complete 

individual trajectories necessary for contact estimation in epidemic studies (Burstedde et al., 2001; 

Helbing et al., 2000; Helbing & Molnar, 1995; Henderson, 1971). Since its conception, there have 

been several advances in social force models involving force field estimations, algorithmic 

developments and applications in situations like panic, traffic dynamics and evacuation (Lämmel, 

& Plaue, 2014; Li & Jiang, 2014; Mehran et al., 2009; Treiber et al., 1999; Wei-Guo et al., 2006; 

Zanlungo et al., 2011). Namilae et al. (2017a; 2017b) have used pedestrian dynamics described by 

the social force model in a multiscale model to study the spread of epidemics during air travel.  

Despite separate developments in pedestrian dynamics and epidemiology, there is a paucity 

of epidemiological models that utilize detailed information from pedestrian dynamics for contact 

estimation. There is a strong correlation between contact and infection rates in several disease 

epidemics, such as SARS and Ebola (Lipsitch et al., 2003; Rivers et al., 2014). Given the 

preponderance of epidemic outbreaks in high pedestrian density locations, a model that accounts 

for pedestrian dynamics in contact estimation can be a design tool for developing mitigation 

strategies. In this paper, the researchers develop such a multiscale model and utilize it to study 

disease spread in pedestrian queues. Winding queue formation is a ubiquitous crowd control 

procedure. 
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Consequently, individuals in crowded gatherings often spend a significant amount of time 

in waiting for queue lines. In the multiscale model, pedestrian dynamics is used to generate 

trajectories of pedestrian motion and estimate the rate of contacts between infected and susceptible 

individuals. The researchers incorporate this information into a stochastic infection dynamics 

model with infection transmission probability and contact radius as primary inputs. This generic 

model is applicable for several directly transmitted diseases like Ebola, SARS, and H1N1 influenza 

by varying the input parameters related to infection probabilities and transmission mechanisms. 

The researchers utilize this multiscale model to analyze disease spread in various pedestrian queue 

configurations, suggest preferred layouts, and design strategies that would reduce contacts and 

consequently mitigate the overall disease spread.  

Methodology 

Pedestrian dynamics. To first estimate the number of contacts between susceptible and 

infectious individuals, the researchers model each mobile pedestrian as a particle and immobile 

objects like walls as groups of stationary particles. The evolution of pedestrian particles and their 

interaction with other pedestrians and stationary particles are described by molecular dynamics 

like the social force model (Helbing et al., 2000). The net force if  acting on ith pedestrian (or 

particle) can be defined as: 

𝑓�̅� = 𝑚𝑖

𝜏
 (�̅�0

𝑖 (𝑡) −  �̅�𝑖(𝑡)) +  ∑ 𝑓�̅�𝑗(𝑡) = 𝑚𝑖
𝑑𝑣𝑖

𝑑𝑡
 𝑗≠𝑖  (1) 

with the pedestrian position at a given time obtained by integration as �̅�𝑖(𝑡) =  ∫ �̅�𝑖(𝑡)𝑑𝑡. 

( )i

ov t  refers to the desired velocity of pedestrian, and ( )iv t  that of the actual velocity. im  is the 

particle’s mass and  is the evolution time constant. The momentum generated by a pedestrian’s 
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intention, denoted by 𝑚𝑖

𝜏
 (�̅�0

𝑖 (𝑡) −  �̅�𝑖(𝑡)), results in a self-propulsion force that is balanced by a 

repulsion force ( )ijf t  to obstacles in the direction of motion. In this study, the researchers use the 

Lennard –Jones type repulsion term used earlier by Namilae et al. (2017a; 2017b). 

While equation (1) describes the general motion of pedestrians, the researchers need to 

introduce modifications to this equation to account for slow-moving pedestrian queues. 

Pedestrians in a queue move at the speed of the nearest person ahead in the line. To model this 

scenario, the researchers introduce location dependence to the desired velocity in the self-

propulsion term as: 

𝑣0
𝑖 (𝑡) 1e = 

{
( Av +  i Bv  )  (1 −  

δ

min{𝑟𝑖𝑗|𝑓𝑟𝑜𝑛𝑡 ; 𝑖≠𝑗}
 )  1e ;  𝛿 =  {

𝛿1 ; 𝑖𝑓 𝑖 & 𝑗 𝑜𝑓 𝑠𝑎𝑚𝑒 𝑔𝑟𝑜𝑢𝑝 
𝛿2 ; 𝑖𝑓 𝑖 & 𝑗 𝑜𝑓 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑔𝑟𝑜𝑢𝑝𝑠

 

0 ; 𝑖𝑓 𝑟𝑖𝑗|𝑓𝑟𝑜𝑛𝑡 <  𝛿

 

 

(2) 

where 1e  is the desired direction of motion. Av  and i Bv  are the deterministic and 

stochastic components of the desired velocity respectively. The values of walking speed terms (

Av  and i Bv ) can be varied to obtain a given distribution of age groups and gender of travelers 

(Zeleba, Ciepka, & RezA, 2012).  is the cut-off distance constant between the ith and jth 

pedestrians at which the desired velocity of the ith pedestrian reduces to zero velocity (stationary 

condition).  

To mimic the real-life scenarios, the researchers also account for the formation of groups 

of pedestrians. The groups’ formation is controlled by adjusting the distance ( ) in equation (2). 

Our empirical observations on a theme park queue (see section 2.3) and comparisons with the 
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literature (Moussaïd, Perozo, Garnier, Helbing, & Theraulaz, 2010) indicate that  separation 

values are different between pedestrians belonging to a group (e.g., family or friends in the queue) 

and other pedestrians. Based on this, an average distance of 𝛿1 =0.46 m is chosen for pedestrian 

particles within the same group, while this distance between independent pedestrians is given a 

value of 𝛿2 =0.64 m. 

Contact estimation and infection model. Consider a population of size N consisting of 

I(t) infected and S(t) susceptibles at time t. Pedestrian position of particle i (𝑟𝑖(𝑡)) evolves 

through pedestrian dynamics and is a function of age, sex, and infection status. A susceptible can 

become infected when coming into direct contact with an infected. Given the trajectory of 

pedestrians over time, the number of contacts 𝑚𝑖 can be evaluated by counting the instances 

when the distance between i and j pedestrians ( ijr ) is less than a virus-specific contact radius (x).  

This transmission distance (x) used to define the contacts is dependent on the type of pathogen 

and mechanisms for its spread. For diseases like Ebola, studies indicate that the primary mode of 

transmission is through contact droplets (Osterholm et al., 2015; Judson, Prescott, & Munster, 

2015). 

Consequently, a distance that enables direct touch needs to be used for estimating contacts 

for such diseases. Other infectious diseases like SARS and influenza are known to be transmitted 

by both shorter- and longer-range airborne mechanisms (Clark & de Calcina-Goff, 2009; Yuen & 

Wong, 2005). Studies show that micrometer-sized aerosol clouds generated during cough traveling 

over 2 m (Bourouiba, Dehandschoewercker, & Bush, 2014; Gupta, Lin, & Chen, 2009). The 

researchers vary the contact radius between these distances to account for the various infection 

spread mechanisms.  
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Next, the researchers consider the probability (𝑃𝑖𝑛𝑓) that a contact between a susceptible 

and an infective results in a successful infection transmission  The researchers divide this input 

parameter into two components: a viral shedding probability distribution (Pc) which is a function 

of time since acquiring infection for the specific virus in question, and a pathogen spread 

mechanism component (Pm ). This includes contributions of several independent mechanisms 

comprising (a) aerosol exposure and inhalation probability (Pa) common in infections such as 

SARS and influenza, (b) Coarse pathogen droplet inoculation (Pd) common in infectious diseases 

like Ebola (Clark & de Calcina-Goff, 2009; Osterholm et al., 2015; Yuen & Wong, 2005). Other 

mechanisms, including fomite mechanism, which involves contaminated surface-to-hand transfer 

would contribute to the infection spread, but such mechanisms do not involve human-human 

contacts in this context and are not considered here. The infection probability would then be 

defined as:   

 inf .c m c a dP P P P P P    (3) 

First, consider the viral shedding probability distribution (Pc). Studies indicate that the 

amount of viral shedding is typically dependent on the length of the incubation period and the 

number of days since the appearance of symptoms. In a previous study, Namilae et al. (2017b) 

used CDC data on the amount of RNA (ribonucleic acid) virus copies in the blood serum since the 

illness contraction to generate this probability distribution for Ebola (Towner et al., 2004). A 

similar approach can be used for other diseases, for example, for SARS pathogen, the viral gene 

expression of the nucleocapsid (N) protein, detected at different rates along with the evolution of 

the virus from post-onset of the symptoms till convalescence is indicative of viral shedding (Zhao, 

2007). For influenza, nasal, oral, or ocular shedding of the H1N1 virus has been detected by 
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determining the relative equivalent unit from viral RNA level (Paquette et al., 2015). Such data 

can be used to generate the Pc distribution. Figure 32 shows the viral shedding distributions the 

researchers generated based on Zhao (2007) for SARS and H1N1 influenza, respectively.  

(a) (b) 

Figure 32. Viral shedding probability distributions (Pc) for (a) H1N1 influenza and (b) 

SARS 

There are many formulations in the literature to compute the mechanism-specific 

probability of transmission. Table 34 lists the details of the popular mechanisms for aerosol and 

coarse droplet mechanisms. The functional form of the aerosol inhalation probability is described 

in the data-driven modeling framework in Teunis et al. (2008), which, in turn, is based on Riley’s 

Dose-response model (Riley & O'Grady, 1961). The probability for coarse droplet inoculation 

mechanism considers the droplet cone emitted during expiratory events like coughing and 

exposure surface of the susceptible (Teunis, Brienen, & Kretzschmar, 2010).  

The probability that an infectious individual “i” in the crowd comes into contact with other 

individuals is mi/N, where mi is the number of contacts. Using Bayes’ theorem for conditional 

probability P (contact and infection) = P (infection |contact). P (contact) = Pinf . 
𝑚𝑖

N
. To account for 

the demographic stochasticity of the susceptible individuals, the number of newly infected by this 
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infective “i” is estimated by a binomial distribution Ii (t)~B(ni,pi) with parameters ni= Si (t-1), the 

number of susceptibles exposed to the contagion at time t, and 𝑝𝑖 = 𝑃𝑖𝑛𝑓 .
𝑚𝑖

N
 . Equation (3) is used 

for estimating Pinf . 

For each infective individual, all the possible permutations are run, and the binomial 

distribution is obtained at each run. Repeating the same process for all the infectives with different 

days of infection c, further binomial distributions are obtained over a range of newly infected 

pedestrians in the queue. Denote by the variable  𝜆 the possible number of newly infected 

pedestrians ranging from zero to the maximum obtained number Ninf (𝜆= 0,…,𝜆𝑖 ,…,Ninf). To 

obtain the mean binomial distribution of the number of people infected at time t by all the possible 

permutations, denoted “Comb” of the infectives with varying age of infection “c”. Also, let 𝑤𝑖 be 

the frequency of obtaining 𝜆𝑖  in the runs. The researchers combine the probability plots and 

average them as given by: 

I(t) ~ ∑ ∑ {𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 [𝑆𝑖(𝑡 − 1), 𝑃𝑚. 𝑃𝑐
𝑖𝑐

0

𝑖=1
𝑑
𝑐=1  

mi(t−1)

𝑁
 ]}* 𝑤𝑖 (𝜆𝑖) / Comb (4) 

Note that the contacts are defined when pedestrians are within a specific transmission distance, 

which is dependent on the transmission mechanism. Instead of using fixed parameters for defining 

contact, the researchers will treat contact distance and transmission probability as parameters in 

assessing epidemic spread. The researchers will vary these parameters over a broad range to model 

the different diseases and transmission mechanisms for several pedestrian queue configurations. 

Based on the above discussion, the researchers vary the contact distance between 2.1 m and 0.9 m. 

Similarly, the infection probability (𝑃𝑖𝑛𝑓) is varied from 0 to 0.2 to represent various levels of 

infectivity.   
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Table 34 

Formulations for generating mechanism-specific probability distributions. 

Mechanism Equations Notes References 

Aerosols 
mechanism 

𝑃𝑎= (1 − 𝑒
−

𝑄𝐶𝑎𝜏

𝑉𝑜 ) Data-driven model 

framework based on dose-

response model 

𝐶𝑎 - the maximum initial 
concentration of contagion in 
aerosol suspension 
𝜏 - exposure time 
Q - respiration rate of 
susceptibles 𝑉𝑜 - volume of 
infection envelope 

Riley & 
Grady 
(1961); 
Teunis, 
Brienen, & 
Kretzschmar 
(2010) 

Coarse droplet 
inoculation 𝑃𝑑 =  

𝑆𝐴

𝑆𝐶

.
𝑉𝐶

𝑉𝑜

 Model based on expiratory 

droplet cone 

𝑉𝐶  - volume of cone in which 
droplet can fall 
𝑉𝑜 - room or exposure volume 
𝑆𝐴 - exposed mucosa surfaces 
𝑆𝐶 - circular area base of the 
cone 

Teunis et al. 
(2008) 

 

Model application to pedestrian queue configurations. Pedestrian serpentine queues 

are an essential component of crowd management. These queues are often unidirectional and 

have different widths and configurations to fit with the available area and the floor plan. The 

queues are often separated by rope stanchions for their ease of use; however, temporary walls 

could also be used for this purpose. Examples of such queues include airport security, waiting 

areas like at theme parks, and other crowded places. Within the same line and among adjacent 

lines, many susceptibles are often within contact radius, and viral infection may propagate if an 

infectious pedestrian is present.  
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The researchers evaluate the role of motion pattern and contact creation between 

neighboring pedestrians for different queue configurations. The aisles’ geometry and orientation 

and number of inlets and exits are altered between the different configurations. To model queue 

configurations that are used in practice, the researchers evaluated a real-life queue at a theme park 

attraction as shown in Figure 33 and use those dimensions as a basis for the different configurations 

modeled in the study. In addition to dimensions, empirical data on contacts and groups was 

collected to guide the simulations. While progressing through the queue, two of our team members 

recorded, the number of nearby individuals within a 1m radius, at 25 seconds time interval. The 

data was collected by two observers independently at two different times of the day. The 

approximate distance between pedestrians, while differentiating between individuals of the same 

group and various groups was also recorded. Table 35 compares the empirical contact data and the 

corresponding simulation data in the corners inner and outer aisles.    

  

 

 

 

 

(a) (b) 

Figure 33. Two dimensional (a) actual, (b) simulated floor map of a specific theme 

exhibition waiting line 



 

 Multi-scale models for transportation systems under emergency 150 

Table 35 

Evaluation of the number of contacts within 1m radius from empirical and simulation data of a 

side-by-side (double) pedestrian queue in a theme park exhibition waiting line 

 Empirical data Data from simulation 
Contact Range Mean Range Mean 
At corners [4-14] 9 [8-12] 10 
In outer aisles [3-7] 5 [5-9] 7 
In inner aisles [5-13] 9 [10-12] 11 

 

The researchers utilize this queue layout as the basis for evaluating the effect of the layout 

and shape of the queue configurations. The aisles’ length and orientation are altered between the 

configurations of the same area and aisle width. The researchers investigated four different 

rectangular configurations with the same shape and area, as shown in Figure 34. The four 

configurations are split vertically (configurations in Figure 34 (b) and (c)) or horizontally (Figure 

34 (a) and (d)). Configurations in Figure 34 (a) and (b) have one inlet and one exit whereas 

configurations in (c) and (d) have two inlets and two exits due to the existence of separated zones. 

The width of the pedestrian lanes remains 1 m, which allows some pedestrians belonging to the 

same group to form a double line. The four configurations are termed Config. 1, 2, 3, and 4, 

respectively. 
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Figure 34. Evolution of pedestrians (t=125s) from simulation of double queue rectangular 

layouts: (a) Config.1, (b) Config.2, (c) Config.3, (d) Config.4 

The researchers also investigate the relationship between the layout shape and the contact 

evolution, by modeling four square floor plans of the same area as above configurations. In all the 

simulations, a total of 600 pedestrians are distributed within the waiting area. The researchers 

consider the possibility of pedestrian groups walking side-by-side, and the formation of a single 

file separately. For all the configurations, the number of contacts between pedestrians is calculated 

where rope separators or temporary walls are placed between the aisles. For rope separators, 

contact extends to pedestrians in the neighboring aisles, whereas for temporary walls, transmission 

due to contact is limited only between the pedestrians within the same aisle. The data of pedestrian 

contact is then combined with the infection model to estimate infectious disease spread. 
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The researchers consider the situation of a single infective in the queue. The infectious 

individual is unidentifiable; his/her rank in the queue is not known apriori. Therefore, all 

permutations of the infectious individual’s position are simulated to determine the average number 

of contacts for a given queue configuration. Also, the infectivity of pathogens is characterized by 

the transmittance mechanism and probability. Airborne viral nuclei vary in size. Expelled fine 

aerosols travel farther and remain suspended for a longer period than coarse droplets. The 

researchers account for coarse droplets and aerosols transmission mechanisms by varying the 

contact radius parameter between 0.9 and 2.1 meters (36-84 inches). The researchers vary the 

transmittance probability between 0.025 and 0.2 to account for the variation in infectivity of 

different diseases. 

The mean number of newly infected pedestrians is then obtained by combining the number 

of contacts within a given infection radius, with the infection transmission probability described 

earlier. The mean number of newly infected is binomially distributed to account for the 

demographic stochasticity in the immunity and receptivity of the susceptible population. For 

instance, Figure 35 represents the distribution of newly infected individuals for the four 

configurations at an infection probability of 0.025 and proximate transmission radius of 1.2 meters 

for aisles separated by ropes. Under these different infection scenarios, the mean number of newly 

infected exposed individuals is obtained. In the following, only the peak dispersion of the disease 

(the mean of the binomial distribution) among the susceptible population is plotted over the 

parameters space of variation.  
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Figure 35. Infection distribution profile for the different configurations at Pinf =0.025 and 

R=1.2m with rope separation 

Results 

Rectangular floor plan. The researchers first consider the case when two pedestrians 

belonging to the same group can move abreast or side-by-side in the four rectangular 

configurations in Figure 34. As initial conditions, the pedestrians are distributed side-by-side 

inside the aisle and in front of the inlet. The spacing between the pedestrian particles is varied to 

differentiate between individuals of the same groups and others from different groups, as 

mentioned earlier in section 2.2. As time evolves, the abreast queues turn into single files in the 

exit aisles, where the pedestrian speed increases (See Figure 34). The researchers do not consider 

a waiting time at the exit to decrease the computational effort.  

With the commonly used rope separators and an infection radius less than 1.2m, which 

corresponds to coarse droplet mechanisms, the infective influences the directly adjacent aisles on 

both sides. The bar chart of Figure 36a estimates the total number of contacts of the infective with 
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the susceptible population. However, a given contact will lead to infection based on the 

transmission probability. Combining the contact data of the bar chart with the infection model 

leads to the mean distribution of infection over the probability range, like in Figure 35. In Figure 

36, the researchers plot the corresponding mean of the binomial distribution for different 

configurations and transmission probabilities. Configuration 3 is the best layout for all 

transmission probabilities, followed by configuration 2 (Figure 36a). In configuration 2, the 

vertical aisles are short with fewer pedestrians. Configuration 3 has the same aisle geometry as of 

configuration 2; however, the pedestrian will exit the queue earlier (halfway) compared to that of 

configuration 2 which results in lower exposure time and consequently fewer contacts. 

Configurations 1 and 4 results in a higher mean number of infections. These configurations have 

long open aisles compared to configurations 2 and 3 with the lower aisle length. Therefore, more 

pedestrians are involved, and interaction occurs more frequently with pedestrians from 

neighboring aisles in these two configurations. Configuration 1 is the least favorable layout 

because diverse pedestrians from both sides come into proximity more frequently than in 

configuration 4 with comparatively shorter aisles. Configuration 4 is worse than configuration 2 

because, at the common corners between the left and right zones, the infective comes into contact 

with additional pedestrians from the neighboring zones.  
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(a) 

 

(b) 

Figure 36. Infection distribution profile for different double queue configurations at a 

contact radius of 1.2m. (a) The rope is used for separation between the rows, (b) The temporary 

shading walls are used for separation between the rows 

Use of temporary (or permanent) walls in the place of ropes limits mixing to pedestrians 

within the same zone and reduces the impact of common corners between zones. In this case, the 

contagion cannot cross over to the adjacent aisles due to the solid wall barrier, therefore results in 

a lower number of contacts. Figure 36b shows the mean number of infections when walls are used 
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for crowd control. Overall, the mean number of new infections is significantly lower than when 

using rope separator. It can be inferred from Figure 36b that configuration 3 still results in the 

lowest number of infections at all probabilities and configuration 1 with long lines results in the 

highest number of infections in this case also. The primary difference between using rope 

separators and walls is in relation to configurations 2 and 4. Configuration 2 resulted in a lower 

number of infections compared to 4 when using rope separators while this is reversed with walls. 

In configurations 3 and 4 the exit time is again shorter than that of configurations 1 and 2, resulting 

in lower overall contacts. Also, at a 1.2m radius of infection, the configurations with long aisles 

and high pedestrian density corners, result in higher contacts when using wall separators. This is 

explained by the fact that the same group of pedestrians remains in contact for a prolonged time.  
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(a) 

(b) 

Figure 37. Infection distribution profile for different double queue configurations at a 

contact radius of 2.1 m. (a) The rope is used for separation between the rows, (b) The temporary 

shading walls are used for separation between the rows 

Figure 37 shows the results of repeating the transmission probability variation over the 

same range, but assuming the aerosol transmission mechanism with a longer contact radius of 2.1 

m. Configuration 3 still results in the lowest number of contacts for both rope and wall separators. 

For rope separator, the researchers observe the same pattern of results as with the coarse droplets 

transmission mechanism, but with increased infection spread (Figure 37a). The similarity between 

the configurations increases, especially at low transmission probabilities. Therefore, the results of 
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configurations 2 and 3, as well as configurations 1 and 4 overlap. At 2.1 m radius, the dispersion 

of the fine viral particles crosses the aisle boundaries to two adjacent aisles on each side. Here, the 

findings of configurations 2 and 3 are nearly identical since the aisles are distributed in the same 

manner except that configuration 3 has two separated zones. When the transmission radius expands 

to many neighboring aisles, pedestrians of one zone in configuration 3 come into contact not only 

with other pedestrians within the same zone but to those in the adjacent zone. Accordingly, 

configurations 2 and 3 have the same behavior. Here, the separation of these two groups has no 

effective role in reducing contact. The same principle applies to configurations 1 and 4; the offset 

between the data of configurations 1 and 4 is reduced compared to that of the coarse droplet 

transmission mechanism for the same reason. Configuration 1 remains the worst layout, especially 

at higher probabilities, due to the elongated, abundant contact between pedestrians from adjacent 

aisles. 

Previously, when the coarse droplet transmission with wall separator was evaluated (Figure 

36b), the maximum number of contacts for configurations 1 and 2 were highest, followed by 

configuration 4. With aerosol transmission mechanism (R=2.1 m) as in FIG.6.b, configuration 2 

remains the greatest in terms of contacts generated, followed by configuration 4, and the resultant 

number of contacts of configuration 1 drops. At low contact radius (R=1.2m), pedestrian density 

within the circle of infection is greater in aisles than at corners. Therefore, long aisles allow greater 

contact time. However, an infection circle with a 2.1m radius of contact will include more 

pedestrians at the corners rather than the aisles. Configuration 2 has the shortest aisles, with the 

greatest number of corners (21 corners), which leads to a higher number of contacts. 
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The researchers now explore the contacts generated between pedestrians in the four 

configurations assuming different infection mechanisms represented by the radius variation. 

Configurations 2 and 3 results in a lower number of infections for rope separators, across the range 

of infection radii from 0.9 to 2.1 m, as shown in Figure 38a. As explained earlier, for aisles 

separated with ropes, shorter aisles lead to lower exposure of an infective resulting in this behavior. 

For walls, the combination of the radius of infection, as well as the interaction time within the 

aisles and at the corners alter the results as shown in Figure 38b. Each combination of infection 

radius and queue layout generates a different number of mean newly infected individuals. At low 

infection, radii short-aisle and low exit time configurations are favorable. At higher radii, 

configuration with less turning corners is better.  

 

(a) (b) 

Figure 38. Contact distribution for different double queue configurations. The contact 

radius is varied. (a) The rope is used for separation between the rows, (b) The temporary shading 

walls are used for separation between the rows 

Square floor plan. The researchers now consider square layouts with the same area as 

the rectangular layouts discussed previously. Since the aspect ratio of square configuration 

changes from that of a rectangular, the aisles number and dimensions vary, as shown in Figure 
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39. Note that configurations 1 and 2 in Figure 39 (a) and (b), are the same except for rotation. 

Therefore, the researchers do not discuss them separately. The results shown in Figures 41-43 for 

these configurations are aggregate of those observed for configurations 1 and 2.  

 

Figure 39. Evolution of pedestrians (t=125s) from a simulation of double queue square 

layouts: (a) Config.1, (b) Config.2, (c) Config.3, (d) Config.4 
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Here, the best configuration is again investigated by monitoring the variation of the number 

of newly infected individuals in terms of infection probability and radius sweep. Looking at the 

four configurations, by varying the infection probability range, configuration 3 is again the most 

favorable, whereas, the other three configurations result in the similar number of infections when 

using rope separators (Figure 40a). Configuration 3 only differs from configurations 1 and 2 by 

the two left and right zones, enabling faster flow at the inlets and exits. In contrast to configurations 

1 and 2 where pedestrians remain in the queue for a longer duration, pedestrians in configuration 

3 are exiting halfway with less elapsed time in the waiting line, thus, resulting in less interaction 

during the shorter wait. Although configuration 4 also possesses two inlets and exits (short exit 

time), the number of common corners where pedestrians from both zones are at proximate contact 

is more than that of a rectangular layout. Also, the square configuration 4 here retains the shortest 

aisle length among all the configurations of the same square layout and even the rectangular ones. 

Although short aisles with rope separators allow less interaction as mentioned previously, shorter 

aisles lead to congestions at the corners where pedestrians reduce their walking speed while 

changing the direction of motion. Therefore, even with a shorter waiting time than the other 

configurations, Configuration 4 allowed more frequent interactions between pedestrians of both 

zones resulting in a similar number of newly infected members as configurations 1 and 2, for lower 

contact radius (Figure 40a). Thus, the long-elapsed time in the queue (aisle and corner) and the 

abundancy of turning corners have the same effect in increasing infection for rope separators in a 

rectangular floor layout. For the same configuration geometries, if the floor layout is increased, 

i.e., wider and longer aisles, configuration 4 will have a better performance as the interaction at 

the corners and in the aisles as well as the time elapsed in the queue are lower than those of 

configurations 1 and 2. 
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(a) 

 

 

(b) 

Figure 40. Infection distribution profile for different double queue configurations at a 

contact radius of 1.2 m. (a) The rope is used for separation between the rows, (b) The temporary 

shading walls are used for separation between the rows 

With temporary walls used as aisle separators, the order of the configurations alters as 

shown in Figure 40b. In this case, only the waiting time within the same line and congestion at the 
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corners plays an important role. Referring to Figure 39, it can be noticed that pedestrians’ density 

along the aisles is almost the same between all the configurations. However, at the corners of 

configuration 4, pedestrians are congregated at higher density than the other layouts leading to an 

increase in the number of infections for Configuration 4 (Figure 40b). This is explained by the 

shorter aisles and the necessity to keep changing velocity direction, thus the reduction in the 

magnitude of the velocity components. This phenomenon also applies to the rope separator 

scenario. However, with ropes, the maximum interaction with pedestrians in neighboring aisles 

and corners is of greater importance and frequency than that within the same line. Configuration 

3 remains the most favorable as it comprises a combination of moderate aisle length and less 

waiting time at corners.  
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(a) 

(b) 

Figure 41. Infection distribution profile for different double queue configurations at a 

contact radius of 2.1 m. (a) The rope is used for separation between the rows, (b) The temporary 

shading walls are used for separation between the rows 

Expanding the contact radius to 2.1 m assuming aerosol transmission mechanism, all 

configurations behave in the same manner for rope separator, as shown in Figure 41a. With the 

infective’s effect crossing multiple surrounding aisles, separation zones, and the number of corners 

and aisles have no effect. For walls, the pedestrians’ distribution at the corners alters the results 



 

 Multi-scale models for transportation systems under emergency 165 

with minor differences (Figure 41b). Configuration 4 has the most congested corners and highest 

number of contacts. Figure 42 summarizes these results. At low infection radius, for a rope 

separator, configuration 3 is always the best, whereas, with higher contact radii, all configurations 

almost behave similarly. For walls, pedestrians’ density at the corners leads to higher contacts for 

configuration 4. The short waiting time of configuration 3 makes it competitive in all conditions. 

(a) (b) 

Figure 42. Contact distribution profile for different double queue configurations. The 

contact radius is varied. (a) The rope is used for separation between the rows, (b) The temporary 

shading walls are used for separation between the rows 

Single-file pedestrian queue. The researchers now consider single-file pedestrian 

queues, which are found in many locations, such as ticketing at entertainment locations, airport 

booking, and security checks, etc. Pedestrian movement is simulated for the four rectangular 

configurations discussed earlier. Here, the pedestrians are initially distributed in a single file. 

Since no waiting time is assumed at the exit, the single lanes are preserved as time evolves. 

However, the distance between these pedestrian increases in the last aisle before exit as no 

obstructions delay their motion. Also, pedestrian distributions in aisles and at corners vary 

between the configurations, which causes some differences in the infection results. This variation 

results from the difference in aisle length, and corners, zones, inlets and exits distributions. 
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Figure 43. Evolution of pedestrians (t=125s) in single queue layouts of horizontal and 

vertical patterns for single and double accesses with the same geometric area. (a) Config.1, (b) 

Config.2, (c) Config.3, (d) Config.4 

Evaluating the probability range sweep, it is observed that the results of coarse droplets 

and aerosols transmission mechanism are almost identical for rope separators as in Figure 44a and 

Figure 45a. The vertical configurations (2 and 3) occupy the lowest mean whereas the horizontal 

configurations (1 and 4) are of higher values with a maximum reached at configuration 1. This 

independence of the results from the transmission mechanism, with rope separator, is explained 

by the lower pedestrian density distribution. Despite the short exit time of configuration 3 over 

configuration 2, the susceptible population in the next-adjacent aisles does not come into critical 

contact with the infective causing disease transmission. Only the forward and backward 

pedestrians in the line, within the same or straight adjacent aisle, are mostly exposed. Also, in all 

the configurations, the pedestrian-to-pedestrian distance is larger in a single queue, since they are 
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free to move at a higher degree of freedom as of an abreast queue. With the solid walls placed, the 

density of pedestrians at the corners makes the difference between the configurations for high 

transmission range, whereas aisles have a greater effect in low infection range. Configuration 1 

proves to be the most efficient in reducing contact for a single file formation (Figure 44b and 

Figure 45b). 

(a) 

(b) 

Figure 44. Infection distribution profile for different single queue configurations at a 

contact radius of 1.2m. (a) The rope is used for separation between the rows, (b) The temporary 

shading walls are used for separation between the rows 
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(a) 

(b) 

Figure 45. Infection distribution profile for different single queue configurations at a 

contact radius of 2.1 m. (a) The rope is used for separation between the rows, (b) The temporary 

shading walls are used for separation between the rows 
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(a) (b) 

Figure 46. Contact distribution profile for different single queue configurations. The 

contact radius is varied. (a) The rope is used for separation between the rows, (b) The temporary 

shading walls are used for separation between the rows 

On the other hand, the variation of the transmission mechanism represented by the radius 

sweep also impacts the results. With an infection radius smaller than the aisle width, all 

configurations behave in the same manner (Figure 46a). Here, the contact occurs only within the 

same aisle; either walls or ropes are used for separation. When the infection radius crosses to the 

neighboring aisles, the single-zone and double-zone vertical, short aisles allow short mixing (low-

time exposure), therefore are favorable to suppression of disease propagation (Figure 46a). The 

inverse phenomenon is observed when wall separators that isolate each aisle from its surrounding 

aisles are used. Here, the configurations with higher congestion at the turning corners like 

configuration 2, result in a higher mean number of infections (Figure 46b).  

Discussion 

In this study, the researchers analyze the propagation of viral infections in winding queues 

via a multiscale model combining pedestrian movement and infection models. By tracing the 

trajectory of each pedestrian in the time frame, the data of contact of each susceptible pedestrian 

with the infective individual is obtained. Then, applying a susceptible-infected model to the contact 
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data determines the number of the newly infected individual who is in critical contact with the 

infective member. To account for various transmittance likelihoods, the parameters related to 

infection transmission are swept over their realistic ranges. The radius of infection is varied to 

represent disease contraction via inhaled aerosols or coarse droplets. The distance traversed by 

airborne suspended viral particles before resting on contaminated surfaces is dependent on their 

microscale size in expulsion events like talking or coughing (Bourouiba et al., 2014). A large 

droplet is a form of the proximate contact transmission mechanism. The travel distance of these 

microorganisms is estimated to reach 1m before deposition (Mangili, & Gendreau, 2005). When 

deposited on the conjunctiva (eyelid mucous membrane) or reaching the gastrointestinal or 

respiratory tract of a susceptible, infection occurs. Residual droplets or aerosols are also a cause 

of infection contraction. When droplet nuclei evaporate, microorganisms of the size of 5 microns 

form (Mangili, & Gendreau, 2005). These microscale particles disperse wider and remain 

suspended in the air for a long period.  

Also, the infection probability of unimmunized individuals is varied to represent the 

chances of disease contraction depending on its infectiousness. Referring to FIG. 1, the infection 

probability ranges between 0.025 and 0.2, assuming complete airborne infection among the 

susceptible population.  

Performing various simulations over the parameter sweep ranges, configuration 3 is the 

best-found layout for the different floor plan geometries, pedestrian alignment patterns, and 

separators media. Configuration 3 is a combination of the short aisle, low exit time, and separated 

zones floor plan. Accordingly, in the following, the researchers only compare the behavior of 

configuration 3 for different infection mechanisms and separators. 
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Figure 47. Comparison of the number of contacts between rectangular and square layout 

for configuration 3 

Figure 47 compares the rectangular and square layouts for only configuration 3. It can be 

observed that there are considerable differences with rectangular layouts being clearly better when 

using rope separators, while the differences are small for walls. The difference between the two 

layouts is greater for aerosols transmission with a larger contact radius. This is emphasized by the 

increase in the length of the aisles in the square layout enabling more frequent interactions. For 

coarse droplet transmission, the viral particles only cross to one neighboring aisle on each side, 

resulting in a smaller difference. For wall separators, almost both layouts of different aspects ratios 

behave the same as contact is restricted within the same aisle.  
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Figure 48. Comparison of the total number of contacts between rectangular double and single 

queues for configuration 3 

The same rectangular configurations are compared between single and double queues. It 

can be directly inferred from Figure 48 that the infections in double queues are higher than those 

of a single queue, due to the greater congregation of pedestrian within the same control area. In 

rope separator scenario, and for wall separator with low transmission radius, there is a great shift 

in the results that reduce in the case of the greater infection radius with wall separator. This is 

explained by the jamming at the corner in both double and single queues, especially when the 

radius (2.1 m) covers the entire turning area. 

Conclusion 

In conclusion, this study showed that the evacuation time would increase when the 

number of pedestrians increased, and when fewer exit doors were available. This study has also 

shown that the shortest queue evacuation policy performed better than the equal distribution 

policy, and the choice of gates can be a factor that affects the efficiency of evacuation. 

Additionally, instructions could increase the efficiency of the evacuation process.  
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The researchers also evaluated the effect of queue configurations on generating contact 

between neighboring pedestrians. Four distinct queues were evaluated with vertical and 

horizontal aisle patterns, one or two waiting zones, rectangular and square floor plans, and 

single-file or abreast pedestrians’ distributions within the control area. With rope separators, 

pedestrians could interact with other pedestrians from neighboring aisles in addition to the 

forward and backward members in the queue within the same aisle. However, for wall 

separators, the interaction between pedestrians was restricted to those only within the same aisle.  

When single-file pedestrians’ motion was assessed in a rectangular floor plan, the spacing 

between pedestrians was increased compared to a side-by-side walking pattern. For rope 

separators, the greater distance between pedestrians of neighboring aisles, compared to an abreast 

motion, creates less contact. The transmission phenomenon was independent of the exiting time 

and transmission mechanism of the disease. However, the short aisle remains favorable over the 

longer ones. For wall separators, for low infection radius, the highest contact occurred in the aisle. 

Since the pedestrians were distributed in the same manner in the case of a one-file queue, all 

configurations were equivalent. For higher radius, the corner was the platform of higher contact.  

On the other hand, there were also limitations to this study. The pedestrians were 

assumed not to be affected by their situation awareness; which means that they did not 

dynamically change their evacuation path. Any situational changes in the emergency would 

affect the results of the study. Another limitation was the software capabilities. The software 

could not simulate a chaos situation, and only predict a safe condition for the pedestrians to 

evacuate. In addition, only people who can move at average speeds were considered in this 

evacuation simulation.  
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Overall, this study produced a valid baseline to simulate passengers’ evacuation paths. 

For example, Case study 1 had considered various speeds when passengers used the escalators or 

stairs in normal and emergency conditions. In the experimental design, the study generally 

predicted an evacuation time by simulating different passenger traffic levels and a different 

number of airport’s exit doors. Most importantly, this study was the development of a valid 

evacuation simulation model that offers ability to change the variables to test different scenarios 

that affects the efficiency of evacuation. 

Future studies would require a greater amount of data analysis and a real-time pedestrian 

movement and incorporate more factors that may affect the efficiency of evacuation during 

emergencies. For example, future studies should consider pedestrians who move at different 

speeds, such as children, elders, and the disabled. More comprehensive evacuation methods 

should be tested, including other factors including the waiting time for the exits, weather, 

terrorism, and hazardous materials.  
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Appendices 

Appendix A 

Observing the arrival rate at the airport 

N Number of passengers 
Time 

(seconds) 

1 9 60 

2 14 60 

3 19 60 

4 20 60 

5 17 60 

6 11 60 

7 26 60 

8 14 60 

9 25 60 

10 24 60 

11 48 60 

12 20 60 

13 19 60 

14 8 60 

15 23 60 
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16 14 60 

17 9 60 

18 16 60 

19 16 60 

20 24 60 

21 17 60 

22 16 60 

23 12 60 

24 13 60 

25 6 60 

26 27 60 

27 20 60 

28 8 60 

29 12 60 

30 32 60 

31 20 60 

32 10 60 

33 14 60 

34 28 60 

35 21 60 

36 14 60 

37 15 60 



 

 Multi-scale models for transportation systems under emergency 204 

 

 

 

 

 

 

 

 

  

38 28 60 

39 25 60 

40 23 60 

41 34 60 

42 6 60 

43 12 60 

44 9 60 
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Appendix B 

Observing the passenger data from the airport 

Flights 
Number of 

passengers 

Duration of de-boarding and leaving the 

airport (Seconds) 

1 73 478 

2 121 815 

3 56 323 

4 139 739 

5 63 413 

6 129 561 

7 63 303 

8 147 673 

9 121 623 

10 219 744 

11 142 816 

12 165 826 

13 74 463 

14 242 1152 

15 148 828 

16 47 341 

17 126 682 

18 153 821 
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19 81 535 

20 63 465 

21 144 787 

22 141 889 

23 69 469 

24 130 828 

25 59 343 

26 52 390 

27 118 747 

28 116 679 

29 49 334 

30 57 449 

31 130 729 

 


