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EXECUTIVE SUMMARY 

Reducing the interactions between pedestrians in crowded environments can 

potentially curb the spread of infectious diseases including COVID-19. The mixing of 

susceptible and infectious individuals in many high-density man-made environments such as 

waiting queues involves pedestrian movement, which is generally not taken into account in 

modeling studies of disease dynamics. In this project, a social force based pedestrian 

dynamics approach is used to evaluate the contacts among proximate pedestrians which are 

then integrated with a stochastic epidemiological model to estimate the infectious disease 

spread in a localized outbreak.  

Practical application of such multiscale models to real life scenarios can be limited by 

the uncertainty in human behavior, lack of data during early stage epidemics and inherent 

stochasticity in the problem. We address this problem in two ways: (a) Firstly, we use other 

data sources such as airport usage data and cell phone location based data to estimate the 

number of people in crowded locations. The pedestrian dynamics simulations with the data 

input are more reliable. (b) Secondly, we parametrize the sources of uncertainty and explore 

the associated parameter space using a novel high-efficiency low discrepancy sequence 

(LDS) parameter sweep algorithm.  

We show the effectiveness of these two approaches in improving the model 

outcomes.  In particular the low discrepancy sequence (LDS) parameter sweep is effective in 

reducing the number of simulations required for effective parameter space exploration in this 

multiscale problem. The algorithms are applied to a model problem of infectious disease 

spread in a pedestrian queue similar to that at an airport security check point. We utilize 
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Orlando International airport as a modeling test-bed for the simulations.  The primary 

outcomes of this research include the following: (a) Pedestrian movement layouts in high 

density areas like airport security queues can impact infectious disease spread. (b) Novel data 

sources like cellphone based data can provide an effective means for reducing the uncertainty 

associated pedestrian dynamics modeling.  (c) We find that utilizing the low discrepancy 

sequence based parameter sweep, even for one component of the multiscale model reduces 

the computational requirement by an order of magnitude 
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1. INTRODUCTION 

Computational models play a key role during pandemics by enabling the exploration 

of different “what if” scenarios for planning public health interventions. Most common 

infectious disease models however focus on large populations at the scale of large geographic 

regions. Unlike models that evaluate the disease spread dynamics using demographic or 

environmental conditions, contact based models directly relate the disease transmission to the 

contact network. Computational models of smaller local outbreaks that incorporate proximate 

contacts have been used to correlate fine scale human interventional behavior to disease 

transmission (Heesterbeek et al., 2015). For example, such analysis during the 2017 Ebola 

outbreak helped assess transmission and preventative strategies for specific settings such as 

funerals (Merler et al, 2015) and airplanes (Namilae et al, 2017).  Analysis of the 

heterogeneous mixing patterns in epidemiological modeling facilitates a better understanding 

of the disease dynamics (Barrat et al., 2010).  Ignoring the heterogeneity in the contact network 

may lead to inaccurate results (Smieszek et al, 2009). While researchers have developed 

models that incorporate contact data through contact tracing data (Smieszek et al , 2009) and 

survey data (De Cao et al, 2014), the spread of COVID-19 poses unique challenges. There is 

direct evidence for the spread of COVID-19 clusters in various high-people density locations 

with variations of above factors, including shopping malls (Cai et al, 2020), concerts (Nippon, 

2020), nursing homes (LA Times, 2020), cruise ships (Mizumuto, 2020), churches (WSJ, 

2020) and mass gatherings (Xu et al, 2020). These reports suggest that colocation and 

movement of people in a crowded location even over relatively short periods leads to the 
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disease spread. Pedestrian movement modeling can provide possible trajectories of pedestrians 

that can be used to model contact heterogeneity in crowded locations mentioned above.  

Among the various pedestrian movement models, e.g. cellular automata 

(Burstedde,2001), fluid flow (Henderson, 1971) and queuing (Okazaki and Matsushita, 1993), 

social force models (Helbing et al 1995, 2000) are most suited for individual trajectory 

evolution, required for contact estimation. Social force models first proposed by Helbing and 

Molnar (1995) extend the concepts of force balance from molecular dynamics to pedestrian 

movement. Here, the forces are a measure of the internal motivations of individual pedestrians 

to move towards their destination in presence of obstructions like other pedestrians and objects. 

Social force models have been applied to crowd simulations situations in panic (Helbing et al, 

2000), traffic dynamics (Treiber et al, 1999), evacuation (Wei-Guo et al, 2006 & Helbing et 

al., 2002) and animal herding (Li et al, 2014). Algorithmic developments have included 

generation of force fields using visual analysis of crowd flows (Mehran et al, 2009), explicit 

collision prediction (Zanlungo et al, 2011), and collision avoidance (Lämmel et al, 2012). 

Namilae et al. (2017a & 2017b, 2020) have combined pedestrian dynamics and stochastic 

epidemic models to study the spread of infectious diseases in settings like airplanes and 

pedestrian queues.  

Airborne diseases including COVID-19 are spread when susceptible individuals inhale 

pathogens suspended in the air. These organic particles are secreted by the nasal tracts and 

throat of an infected individual and are dispersed to the environment through expiratory events 

including breathing, talking, sneezing or coughing. As these viral particles are able to remain 

suspended in the air and navigate distances of several feet, there is a high risk of disease 
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outbreak in a local area with high density of people. Several factors determine the extent of 

transmission that will take place between the infective and the susceptible population; these 

include (1) the infectivity of the contagion, (2) survival lifetime of the pathogen, (3) the 

environmental conditions like the temperature and airflow that determine the contagion spread, 

(4) the extent of mixing between susceptible and infectious individuals resulting in new 

contacts and (5) the duration of the contacts. The parametric range associated with each of 

these factors and the diversity in the initial conditions and the locations of potential disease 

spread exacerbate the prediction problem.  

This uncertainty can be addressed in two ways. Models that incorporate empirical data 

can reduce the uncertainity. For example, new data sources like cell phone location data, twitter 

geotags etc can provide details of pedestrian numbers and paths which can be input to the 

pedestrian dynamics models. Despite this there is uncertainity associated with the large number 

of stochastic parameters in the models. This can be addressed using parameter sweep 

algorithms and parallel computing.  Parameter sweep is an important computational tool that 

employs parallel computing resources to execute multiple computations with different 

combinations of values of the same parameters. Large-scale parameter sweep runs have found 

extensive applications in many scientific and engineering fields (Youn & Kaiser, 2010). For 

example, parameter sweeps have been used to model electromagnetic cascade showers (Nelson 

et al, 1985), photochemical pollution (Abramson 1994), stratospheric warming events (Naito 

et al, 2003), high energy physics applications (Basney et al, 2000), etc.  Chunduri et al (2018) 

used a Low Discrepancy Sequences based scrambled Halton sequence to effectively reduce 

the parameter space for a pedestrian dynamics based contact estimation problem. Here we 
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extend this approach to address the parameter space in the multiscale pedestrian-dynamics 

infection spread problem.  

The objective of this research is to evaluate the effect of pedestrian movement in 

airports on the spread of infectious diseases.  We utilize a social force based pedestrian 

dynamics model using in-house codes and Anylogic agent based modeling software,  and 

integrate it with a stochastic infection dynamics model to analyse the spread of infectious 

disease in crowded areas in the airports. Novel data sources are used to identify the high people 

density regions in the airport, which are modeled using pedestrian dynamics.  There are several 

parameters with inherent uncertainties in both pedestrian dynamics and infection spread 

models. In order to comprehensively understand this problem, the infectious disease spread 

needs to be investigated for various combinations of the parameters. Here, we show that a 

parameter sweep algorithm based on low discrepancy sequence can be extremely effective in 

reducing the parameter space for this multiscale problem.  
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2. MULTISCALE MODELING APPROACH 

This computational model addresses the transmission and dispersion of fatal infectious 

pathogens in locations, where large groups of people gather at high densities, through a 

multiscale model that combines pedestrian dynamics with stochastic infection spread models. 

The pedestrian dynamics models uses a Molecular Dynamics (MD) based numerical approach 

called social force method. The MD algorithm captures the step-by-step evolution of the 

system of particles tracing their trajectories and can be used to estimate the contact frequency 

between passengers during air-travel. We incorporate this contact analysis into a discrete-time 

stochastic Susceptible-Infected (SI) model with infection probability and contact radius as 

primary inputs. This generic model is applicable to several directly transmitted diseases 

including COVID-19 by varying the input parameters, and can be used to assess the influence 

of pedestrian movement on disease spread. This multiscale framework is used to analyze the 

infectious disease spread in a winding queue configuration under various transmission 

scenarios using a parameter sweep. 

2.1. Pedestrian dynamics using social force model   

In the context of modeling the pedestrian mixing patterns to analyze infection spread 

in crowded environments, numerical simulations are performed to mimic the movement 

behavior of pedestrians. Here, the pedestrians are considered to be particles whose motion is 

determined by a balance of repulsive and propelling forces.  The resulting trajectories are used 

to estimate the number of contacts. The repulsive ( 𝑓𝑓𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝) and attractive (𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ) forces are 

summated as in as in Namilae et al. (2017a & 2017b). The tendency to avoid collision and 



 

Discrete Dynamics and Epidemiological Multi-Physics Models for Transportation                      8 

 

impenetrability with other individuals in high density crowds and immobile obstacles in the 

pedestrian’s path are represented by the repulsive terms.  

𝑓𝑓𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝 = �∇��⃗  φ(𝑟𝑟𝑖𝑖𝑖𝑖)

i≠𝑙𝑙

=  �∇��⃗  [ ϵ (
σ
ri𝑙𝑙

)12
i≠𝑙𝑙

]   (1) 

Where ϵ and σ are repulsive force field parameters and rilis the distance between the ith and 

the lth nearest front pedestrian in the queue.  On the other hand, pedestrian self-propulsion to 

their target destination (e.g. an exit) either individually or collectively results in another force. 

This intention force is obtained by the average rate of change of momentum: 

𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  =  ∆P
�����⃗

τ
  = 1

τ
 �𝑃𝑃�⃗0𝑖𝑖(t) − 𝑃𝑃�⃗𝑖𝑖(t)�  (2) 

Pedestrians move at the speed of the nearest person ahead in a queue. This is accounted for 

by the location dependent- desired velocity, in the direction of motion 1e , in the self-

propulsion term as: 

𝑃𝑃�⃗0𝑖𝑖(t) =  𝑚𝑚𝑖𝑖𝑣𝑣0𝑖𝑖 (𝑡𝑡) 1e = 𝑚𝑚𝑖𝑖 �
( Av +  i Bvγ  )  �1 −   δ

min�𝑟𝑟𝑖𝑖𝑖𝑖|𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ; 𝑖𝑖≠𝑗𝑗�
 �   

0 ; 𝑖𝑖𝑖𝑖 𝑟𝑟𝑖𝑖𝑖𝑖|𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 <  𝛿𝛿
1e  

Where 𝛿𝛿 =  � 𝛿𝛿1 ; 𝑖𝑖𝑖𝑖 𝑖𝑖 & 𝑗𝑗 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 
𝛿𝛿2 ; 𝑖𝑖𝑖𝑖 𝑖𝑖 & 𝑗𝑗 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 

(3) 

The proposed social force model allows evolution of the pedestrian in time domain. The 

number of contacts is then obtained from the generated trajectories. The contact data is utilized 

in an epidemiological model to map the infectious disease propagation in the population. 

 

2.2. Pedestrian dynamics using Anylogic - agent based modeling   

The model mentioned in the previous section is developed in house as a FORTRAN 

program and is especially useful for running large number of simulations using parallel 
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computing.  However, the layouts needed for the simulation need to be manually generated, 

which leads to some limitations when modeling complex geometries. We use Anylogic Agent 

based modeling software to overcome some of these limitations for complex geometries and 

layouts. The larger scale model at the level of entire airport is created using Anylogic. Detailed 

model of a given section is then developed using in-house codes for parallel implementation 

and parameter sweeps. Note that infectious disease modeling requires pedestrian trajectories 

only and can work with either pedestrian dynamics model.  

We develop a simulation model of pedestrian movement in Orlando International 

Airport (MCO) by incorporating the social force model in agent-based simulation software 

AnyLogic. The layout of the second floor of the MCO modeled to scale is shown in figure 1.  

Pedestrians enter through the entry line (target line) and go to the waiting area. There are three 

waiting areas (food court & lounges) in the model, they were drawn using polygonal node 

under space markup. Service with lines component is used to outline the security check-in. 

West zone security check-in has four services and one queue, east zone large aisle has two 

services with a single queue, similarly east zone small aisle has two services and a queue. For 

airport security check-in areas serpentine lines are used as a queue. The blocks in the pedestrian 

library are used to construct flow charts that help to generate, control, and process pedestrians 

in the model.  
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Figure 1. Anylogic model of the Orlando international airport and associated flowcharts.   

The model has three separate flow charts to represent three entry and exit points. The 

first block is pedSource which generates pedestrian arrival. We set the number of pedestrians 

and limit the number of arrivals as required for each entry points, 600 pedestrians are used for 

the west zone and 300 each for east zone aisles. Once the pedestrians enter the airport, they 

will first enter into waiting areas, as modeled by pedWait block. It allows pedestrians to wait 

for a specified time in particular area to simulate pedestrian activities before the check-in 

process . After the waiting, pedestrians enter into pedService block which simulates the 

security check-in process, in which they wait in a single queue to be serviced. After check-in 

services, pedestrians will walk to their specified targets, simulated by pedGoto block. By using 

pedGoto, pedestrians find a path to the specified destination. Finally, pedSink is used to 

simulate that a pedestrians that leave the airport which is the endpoint for pedestrian flow. 
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The input for the number of pedestrians in the different regions of the airports is based 

on cellphone location data. The individual blocks at the security check are modeled in detail 

using the in-house codes for the parallel parametric sweep and the infection spread analysis.    

2.3. Epidemiological model 

Consider a population of size N consisting of I(t) infected and S(t) susceptibles at time 

t. A susceptible can become infected when coming into direct contact with an infected. Given 

the trajectory of pedestrians over time, the number of contacts 𝑚𝑚𝑖𝑖 can be evaluated as: 

( ) .i ij ij
j

m t r λ= ∑ ,   where 0ijλ =  if ijr x>  and 1
ij

ijr
λ =  if ijr x<  (4) 

Here, ijr is the distance between i and j pedestrians and x is a virus specific distance parameter. 

Pedestrian position (𝑟𝑟𝑖𝑖(𝑡𝑡)) evolves through pedestrian dynamics and is a function of the age, 

sex and infection status.   

  The transmission distance (x) used to define the contact is dependent on the type of 

pathogen and mechanisms for its spread. For diseases like Ebola, studies indicate that primary 

mode of transmission is through contact droplets (Osterholm 2015, Judson 2015, Nikiforuk 

2017). Consequently, a distance that enables direct touch needs to be used for estimating 

contacts for such diseases. Other infectious diseases like SARS are known to be transmitted 

by both shorter and longer range airborne mechanisms (Clark 2009, Li 2004). Likewise, the 

influenza can be transmitted through coarse droplets or microscale bioaerosols being respired 

into the respiratory tract of a susceptible individual (Yuen 2005). Studies suggest that 

transmission occurs when the virus particles are suspended in air and inhaled by a susceptible 

individual or when that individual touches a contaminated surface with deposited droplets and 
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then touches their eyes, nose or mouth (Yuen 2005). The size of these particles can play an 

important role in contagion dispersion. Small particles dispersed in aerosols transmit over large 

distances. For example, experiments indicate micrometer sized aerosol clouds generated 

during cough traveling over 2 m (Bourubia 2014, Gupta 2009).  

Consider that the infection spread initiates due to the insertion of 𝑖𝑖𝑐𝑐0 infectives initially 

(𝑡𝑡0= 0) at their “c” days of infection, out of “d” incubation days. Denote by 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖   the probability 

that a contact between a susceptible and an infective (or contaminated surface) results in 

infection of the susceptible.  We divide this input parameter into two components: a viral 

shedding probability distribution (Pc) which is a function of time since acquiring infection for 

specific virus in question, and a pathogen spread mechanism component (Pm). This includes 

contributions of several independent mechanisms comprising (a) aerosol exposure and 

inhalation probability (Pa) common in infections such as Norovirus (Friesema, 2009) and Ebola 

Jaax(1995), (b) Coarse pathogen droplet inoculation (Pd) common in influenza and SARS 

(Mangli 2005).  COVID-19 transmission is primarily driven by proximity between an infective 

person and a susceptible person, and can be transmitted by both aerosol and close contact 

mechanisms (CDC 2021). Other mechanisms including fomite mechanism, which involves 

contaminated surface-to-hand transfer would contribute to the infection spread, but such 

mechanisms do not involve human-to-human contact in this context. The infection probability 

would then be defined as:   

( )inf .c m c a dP P P P P P= = +  (5) 

Consider the viral shedding probability distribution (Pc). Studies indicate that the amount of 

viral shedding is typically dependent on the days post symptom appearance for the infected 
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individual and the length of incubation period. In a previous study (Namilae 2017 a&b), we 

used CDC data on amount of RNA (ribonucleic acid) virus copies in the blood serum since the 

illness contraction to generate this probability distribution for Ebola in Figure 2.a  

(Towner 2004). Similar approach can be used for other diseases, for example, for SARS 

pathogen (Figure 2.b), the viral gene expression of the nucleocapsid (N) protein, detected at 

different rates along the evolution of the virus from post onset of the symptoms till 

convalescence is indicative of viral shedding and can be used to generate the Pc distribution 

(Zhao 2007). For influenza, nasal, oral or ocular shedding of H1N1 virus has been detected by 

determining the relative equivalent unit (REU) from viral RNA level (Paquette 2015). Such 

data can be used to generate the Pc distribution (Figure 1.c). Figure 1 shows the viral shedding 

distributions we generated based on viral shedding for H1N1 influenza and SARS respectively. 

While we consider maximum infectivity for calculating term incorporates the differences in 

infectivity due to variations in infectious individuals. The stochasticity in individual’s 

susceptibility is accounted for via the binomial or Poisson distribution. 
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(a) 

 
(b) 

 
(c) 

Figure 2 Infectivity probability distributions (Pc) (a) along the days after clinical signs of 

Ebola infection, (b) during viral shedding of SARS and (c) H1N1 
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The distribution of the infective individuals in the crowd is unidentified; any of these 

pedestrians can be probably infective. We assume that the infectives can be in anywhere among 

the crowd, so there are many possible permutation patterns of infectives location within the 

crowd. Denote by “Comb” the possible permutations of infectives which depend on the 

assumed number of infectives and the total number of the population. All these possible 

permutations are run successively, and at each run the number of susceptible individuals 

𝑆𝑆𝑖𝑖(𝑡𝑡 − 1) in contact with the infectives is counted. Then, the number of newly infected 

individuals is a binomial distribution of the number of individuals in contact 𝑆𝑆𝑖𝑖(𝑡𝑡 − 1) and 

probability of success of viral transmission 𝑝𝑝𝑖𝑖. Repeating the same process for all the infectives 

with different days of infection c and at different locations in the crowd, further binomial 

distributions are obtained. Denote by 𝜆𝜆 the possible number of newly infected pedestrians 

ranging from zero to the maximum obtained number Ninf (𝜆𝜆= 0,…,𝜆𝜆𝑖𝑖,…,Ninf). Also let 𝑤𝑤𝑖𝑖 be 

the frequency of obtaining the same 𝜆𝜆𝑖𝑖  in the runs. In order to obtain the mean binomial 

distribution of the number of people infected at time t by all of the infectives with varying age 

of infection “c”, we combine the probability plots and average them as given by: 

I(t) ~ ∑ ∑ {𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 [𝑆𝑆𝑖𝑖(𝑡𝑡 − 1),𝑃𝑃𝑚𝑚.𝑃𝑃𝑐𝑐
𝑖𝑖𝑐𝑐0
𝑖𝑖=1

𝑑𝑑
𝑐𝑐=1  mi(t−1)

𝑁𝑁
 ]}* 𝑤𝑤𝑖𝑖 (𝜆𝜆𝑖𝑖) / C (6) 

Where 𝑤𝑤𝑖𝑖 (𝜆𝜆𝑖𝑖) is the frequency of the mean 𝜆𝜆𝑖𝑖 repetition during all the possible combinations 

“C” of infectives. Note that the contacts are defined when pedestrians are within a specific 

transmission distance which is dependent on the transmission mechanism. Instead of using 

fixed parameters for defining contact, we will treat contact distance and contact definition as 

one of the parameters in assessing epidemic spread and vary it over the parameter space to 

mimic epidemic dispersion in different conditions, within the various pedestrian dynamics 
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configurations associated with winding queues. Based on the above discussion, we vary the 

contact distance between 2.1 m and 0.9 m which are representative of aerosol and coarse 

droplet mechanisms respectively. Similarly, the infection probability (𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 ) is varied as a 

parameter up to a value of 0.2 to represent various levels of infectivity.   

The Binomial distribution is valid for a large crowd with higher probability of infection. 

This applies to the winding queues. However, in the situation where N is large and Pinf is very 

small (below 0.1), for instance during boarding and deplaning, the Poisson distribution can be 

used to approximate the binomial distribution. Here, I(t) is distributed using the Poisson 

approximation: 

I(t) ~ ∑ ∑ {𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 [𝑆𝑆𝑖𝑖(𝑡𝑡 − 1),𝑃𝑃𝑚𝑚.𝑃𝑃𝑐𝑐
𝑖𝑖𝑐𝑐0
𝑖𝑖=1

𝑑𝑑
𝑐𝑐=1  mi(t−1)

𝑁𝑁
 ]}* 𝑤𝑤𝑖𝑖 (𝜆𝜆𝑖𝑖) / C (7) 

The infection probability, radius of infection and pedestrian dynamics model parameters are 

all considered to be parametric variables. By varying these parameters over the space of 

possible numerical values, one can analyze how mitigation measures related to pedestrian 

movement would impact the disease spread in a wide variety of conditions. This makes the 

approach generic and applicable to new diseases like COVID-19 by varying the 

parameterization. However, given the extremely large parameter space, efficient algorithms 

are desired to cover the parameter space effectively.    

The contact data is obtained from pedestrian trajectories by comparing the distance 

between pedestrians to the transmission threshold (x) dependent on the types of pathogen and 

mechanisms for its spread. 

The infection probability, radius of infection and pedestrian dynamics model 

parameters are all considered to be parametric variables. By varying these parameters over the 
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space of possible numerical values, one can analyze how mitigation measures related to 

pedestrian movement would impact the disease spread in a wide variety of conditions. 

However, given the extremely large parameter space, efficient algorithms are desired to cover 

the parameter space effectively.    

2.4. Parameter Sweep Methods 

Parameter sweep algorithms are used to efficiently cover the parameter space and 

account for combination of the parameters that significantly affect the model outcome. A 

conventional parameter sweep approach is lattice based method wherein the parameters are 

uniformly partitioned. For example, consider a two-dimensional parameter space; in the lattice 

parameter sweep, the points (or parameters values) in the horizontal and vertical directions are 

equally spaced respectively. This scheme is inefficient in terms of domain coverage and for 

checking convergence (Chunduri et al, 2018). For example, consider a situation where the 

model has d parameters resulting in a d-dimensional parameter space. If this is partitioned 

uniformly in these dimensions with R points (representing simulations) for each parameter, the 

total number of points obtained is N = Rd. In order to check for convergence, if we refine the 

space domain by doubling the number of points. Then, the number of points N’ becomes, N’ 

= R’d = (2R)d = 2d Rd =2d N. This ratio between the two consecutive lattice sizes (∆N=2d) is 

very large and is imprecise for checking convergence. Also, running a simulation of N’ grid 

points is computationally exhaustive and time consuming. Instead, alternate non-uniform 

parameter sweep techniques offer better convergence and faster outcomes. 

Non-uniform domain partition methods based on the pseudo-random and quasi-random 

sequences are promising algorithms for nodes sequence generation enabling faster 
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convergence at lower number of nodes compared to the lattice method. These methods are 

commonly used in Monte Carlo and quasi-Monte Carlo algorithms to solve for numerical 

integration problems (Radovic 1996). In a Monte Carlo simulation, the accuracy of the results 

depends on the generation of the pseudorandom sequence over a [0,1] interval. Using a random 

sequence was found to be asymptotically slower than LDS because sparse and clustered 

regions are observed in the space domain (Chunduri et al 2018).  

Quasi-random sequences are deterministic alternatives to pseudo-random sequences. 

They are infinite sequence of points, used in Quasi-Monte Carlo (QMC) simulations (Morokoff 

& Caflisch, 1994). These sequences are referred as Low Discrepancy Sequences (LDS) since 

the points are more evenly distributed [0, 1]d. Here, discrepancy is the measure of uniformity 

of the sequence. For Monte Carlo method, the convergence is of the order O (N −1/2) compared 

to O (logd (N)/N) for QMC because of the Koksma-Hlawka inequality (Goncu, 2009). Quasi-

random sequences have different variants such as Halton, Scrambled (randomized) Halton and 

Hammersley sequences. The Halton sequence construction, defined via the radical inverse 

function, uses coprime numbers as their bases (Halton, 1964). In the Halton sequences, the 

lack of correlation between the radical inverse functions of different bases can lead to 

inadequate distribution of two-dimensional projections. The scrambled Halton sequence 

corrects this defect by redistributing the projections more accurately. Halton and Scrambled 

Halton sequences have advantages over other sequences in terms of extension of the domain’s 

dimensionality (Chunduri et al, 2018).  

Here, we use Scrambled Halton LDS for a parameter sweep as in Chunduri et al. 

(2018).  However, we extend the application to the multiscale model by applying the algorithm 

https://www.sciencedirect.com/topics/engineering/inverse-function
https://www.sciencedirect.com/topics/engineering/inverse-function
https://en.wikipedia.org/wiki/Coprime_integers
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interchangeably for the pedestrian and infection models. The results are then compared to 

lattice sweep to show the efficiency of LDS in terms of faster convergence and execution time. 

We study the problem of infection spread in a pedestrian winding queue using this approach.  

 
2.5. Application to Pedestrian Queue  

  

(a) 

 
(b) 

Figure 3. (a) Schematic layout of security check region (b) Evolution of pedestrians (t=125s) 

from simulation of a pedestrian queue in a rectangular layout. 
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Pedestrian winding queues are an unavoidable component of crowd management in 

places like airport security checks, religious and entertainment venues.  In Derjany et al. 

(2020), different queue configurations are evaluated in terms of contact generation and 

infection propagation among neighboring pedestrians.  One such pedestrian queue 

configuration is shown in Figure 3 as an example. The modeling work-flow shown in Figure 

4, consists of applying the parameter sweep to the pedestrian parameters first. The resulting 

trajectories are input to the infection model, incorporating a parameter sweep of infection 

variables.   

Table 1 lists the ranges of the pedestrian and infection parameters considered in the 

parameter sweep study.  Both lattice and LDS parameter sweeps are used with these ranges to 

examine their efficiency in reducing the number of simulations needed to adequately cover the 

design space. 

 
 

Figure 4. Schematic depiction of the multi-scale approach. 
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Table 1. Parameters range of the pedestrian-infection model formulation. 
Parameter V0 𝛿𝛿1 𝛿𝛿2 R Pinf 

Range 3.2-5.4 ft/s 15-25 in 25-40 in 36-84 in 0.025-0.225 

Selected increments 0.1-0.2 1-5 1-5 0.5-12 0.01-0.025 

 

For both Lattice and LDS sweeping algorithms, a coarse grid is first considered, and then 

refined until convergence is attained. At each grid size, a histogram with the targeted variable 

(the number of newly infected pedestrians) versus the frequency of occurrence is plotted. Four 

descriptive moments of the probability distribution, mean, standard deviation, skewness and 

kurtosis are analyzed to determine convergence. Once the relative difference of the output 

between two grid sizes is lower than a predetermined tolerance as shown in equation (8), 

further refinement of the parameter space is not required.  

𝑉𝑉𝑖𝑖−𝑉𝑉𝑖𝑖+1
�
𝑉𝑉𝑖𝑖+𝑉𝑉𝑖𝑖+1

2 �
 ≤  𝜀𝜀 (8) 

Here V is a statistical moment and 𝜀𝜀 is a tolerance value. The selection of the tolerance order 

depends on the statistical moment.  For instance, for the relative mean, 𝜀𝜀 is of the order of 10-

3 compared to 10-1 for the root of standard deviation, skewness and kurtosis. The abrupt drop 

of the relative kurtosis from a value greater than unity to a value of order 10-1 indicates that the 

histogram distribution is invariant between the runs. When these conditions are met, 

convergence is attained. 
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3. RESULTS & DISCUSSION 

3.1 Infection dynamics at the Airport Security Check 

We first present the multiphysics model results in this section. This is followed by 

results on the algorithmic developments in reducing the parameter variations needed to cover 

the space efficiently. Reports indicate that travelers are delayed for more than an hour at 

screening checkpoints, causing significant economic burden on airlines (Bender 2016). 

Screening procedure at checkpoints only involves the passengers and their carry-on baggage. 

However, no equipment is available for use to detect viral contagions during an outbreak. 

Consequently, security checkpoints with people congregated in winding queues are a potential 

hotspot for infectious disease spread.  

We utilized cell phone location data for Orlando International Airport (MCO) averaged 

over a week during the October 2017 flu season to statically estimate the inputs to the 

pedestrian dynamics model in terms of, key locations, pedestrian numbers and densities. This 

is expected to change due to the effect of COVID on air travel in recent months, however, these 

results serve as a demonstration of the approach and can be updated with more relevant data. 

In Figure 5, we show the bubble maps of the data and indicate that travelers are concentrated 

near the security check points for terminals A and B in the morning rush hour. An aggregate 

of such maps at different times is used to evaluate how crowd sizes vary and to generate inputs 

to the pedestrian dynamics. These are then used to model the pedestrian movement though the 

security area and the effect of different layout configurations. Eight configurations in square 

and rectangular shapes are used to study the effect of layout shape. Further, the impact of using 

walls as opposed to rope stanchions for directing the queue, as well as the effect of forcing a 
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single file queue are evaluated for effectiveness as mitigation strategies.  We identify specific 

layouts that more effective than currently used ones, however the effect of layout shape is 

reduced when the contact distance is higher (e.g. 2 m in aerosol transmitted diseases). We find 

that walls and single file queue or a combination of both reduces the number of contacts 

significantly.  

 

Figure 5. Bubble maps of the location of passengers in the morning, afternoon and evening 

hours used as input for pedestrian dynamics simulations 

In investigating the relation between the layout shape and the contact among 

pedestrians in queues, we simulate different security line winding queues by changing the 

aisles and zones layout based on actually observed queue configurations in airports (Figure 6). 

With time evolution, the pedestrians move forward in the sequence to reach the exit. It is 

expected that the aisle’s length, direction and structure within the control area, and the 

distribution of turn corners have an effect on the contact between pedestrians. 
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We consider the case of pedestrians arranging in a rectangular queue. At initial 

conditions, the pedestrians are distributed in abreast (side-by-side) manner in the aisles. The 

formation of groups (family members, group of tourists, etc.) is taken into consideration by the 

close abreast queues whereas individual travelers tend to form a more spaced single line as 

mentioned in the formulation section. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Rectangular winding queue layouts: (a) Config.1, (b) Config.2, (c) Config.3, (d) 

Config.4. 
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Four different rectangular queue configurations of the same area, as shown in Figure 6, 

are analyzed. The four rectangular floor plans are either split vertically (configurations (b) and 

(c)) or horizontally (configurations (a) and (d)). Configurations (a) and (b) have one inlet and 

one exit whereas configurations (c) and (d) have two inlets and two exits due to the existence 

of separated zones. The width of the pedestrian lanes remains 1 meter, which allows some 

pedestrians belonging to the same group to form a double line.  

Instead of limiting the analysis to certain disease type or mechanism, we generalize the 

study by sweeping the infection parameters (infection probability and contact radius) over their 

ranges of definition. We vary the contact distance between 2.1 m and 0.9 m which are 

representative of aerosol and coarse droplet mechanisms respectively. Similarly, the infection 

probability (𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖) is varied as a parameter up to a value of 0.2 to represent various levels of 

infectivity.    

The mean number of newly infected pedestrians is then obtained by combining the 

number of contacts within a given contact radius, with the infection transmission probability 

described earlier. The mean number of newly infected is binomially distributed to account for 

the demographic stochasticity in the immunity and receptivity of the susceptible population. 

Under different infection scenarios, the mean number of newly infected exposed individuals is 

obtained. In the following, only the peak dispersion of the disease (the mean of the binomial 

distribution) among the susceptible population is plotted over the parameters space of 

variation.  

With the commonly used rope separators and at a proximate, direct contact via coarse 

droplets (radius of infection less than 1.2m), the infective has influence on only the directly 



 

Discrete Dynamics and Epidemiological Multi-Physics Models for Transportation                      26 

 

adjacent aisles on both sides. However, infection also relies on the transmission probability. In 

other words, not every contact will lead to infection. For a defenseless (unimmunized) 

individual, the probability to contract the disease alters between 2.5 and 20% depending on the 

disease development time and its survival in the ambient environment. Combining the contact 

data with the infection model leads to the mean distribution of infection over the probability 

range. Configurations 3 is the best layout for all transmission probabilities, followed by 

configuration 2 (Figure 7). In configuration 2, the vertical aisles are short, which means less 

capacity of pedestrians. Configuration 3 has the same aisle geometry as of configuration 2. 

However, the pedestrian will exit the queue earlier (half way) compared to that of configuration 

2 which results in lower exposure time. Configurations 1 and 4 result in a higher mean number 

of infections. These configurations have long open aisles compared to configurations 2 and 3 

with the lower aisle length. Therefore, more pedestrians are involved and interaction occurs 

more frequently with pedestrians from neighboring aisles in these two configurations. 

Configuration 1 is the least favorable layout because diverse pedestrians from both sides come 

into proximity more frequently than in configuration 4 with comparatively shorter aisles. 

Configuration 4 is worse than configuration 2 because at the common corners between the left 

and right zones, the infective comes into contact with additional pedestrians from the 

neighboring zones.  

Figure 10 also shows the results of repeating the transmission probability variation over 

the same range, but assuming aerosol transmission mechanism with a longer contact radius of 

2.1 m.  Configuration 3 still results in the lowest number of contacts for both rope and wall 

separators. For rope separator, we observe the same pattern of results as with the coarse 
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droplets transmission mechanism, but with increased infection spread. The similarity between 

the configurations increases especially at low transmission probabilities. Therefore, the results 

of configurations 2 and 3, as well as configurations 1 and 4 overlap. At 2.1 m radius, the 

dispersion of the fine viral particles crosses the aisle boundaries to two adjacent aisles on each 

side. Here, the findings of configurations 2 and 3 are nearly identical since the aisles are 

distributed in the same manner except that configuration 3 has two separated zones. When the 

transmission radius expands to many neighbouring aisles, pedestrians of one zone in 

configuration 3 come into contact not only with other pedestrians within the same zone, but to 

others in the adjacent zone. Accordingly, configurations 2 and 3 have the same behavior. Here, 

the separation of these two groups has no effective role in reducing contact. The same principle 

applies to configurations 1 and 4; the offset between the data of configurations 1 and 4 is 

reduced compared to that of coarse droplet transmission mechanism for the same reason. 

Configuration 1 remains the worst layout, especially at higher probabilities, due to the 

elongated, abundant contact between pedestrians from adjacent aisles. 
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Figure 7. Infection distribution profile for different abreast queue configurations at contact 

radii of 1.2m (coarse droplets) and 2.1m (fine aerosols). 

 
Figure 8. Contact distribution for different abreast queue configurations. The contact radius is 

varied for both wall and rope aisle separation scenarios 

We now explore the contacts generated between pedestrians in the four configurations 

assuming different infection mechanisms represented by the radius variation. We suggest 

placing temporary walls between the aisles to suppress the propagation of the outbreak among 

the waiting crowd. For rope separators previously evaluated, contact extends to pedestrians in 
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the neighboring aisles, whereas for temporary walls, transmission due to contact is limited only 

between the pedestrians within the same aisle. 

Configurations 2 and 3 result in lower number of infections for rope separators, across 

the range of infection radii from 0.9 to 2.1 m as shown in Figure J. As explained, for aisles 

separated with ropes, shorter aisles lead to lower exposure of an infective resulting in this 

behavior. For walls, the combination of the radius of infection, as well as the interaction time 

within the aisles and at the corners alter the results (Figure 8). Each combination of contact 

radius and queue layout generates a different number of newly infected individuals. At low 

radii, short-aisle and low exit time configurations are favorable. At higher radii, configurations 

with less turning corners are better. The wall separator has drastically reduced the number of 

infections compared to the conventionally used rope stanchions.  

These results indicate how the pedestrian movement layouts and strategies affect the 

infectious disease spread. They also point out the need for large scale parameter sweeps to 

address the entire design space. In the following section we discuss the application of the novel 

parameter sweep algorithms to this problem.    

3.2 Application of Parameter Sweep Algorithms 

The workflow in figure 4 is applied with parametric variations in Table 1 as follows. 

First a 5D lattice parameter sweep is performed by varying the three pedestrian dynamics 

parameters, and two infection model parameters over an evenly spaced lattice grid. This 

baseline is compared with two other situations in which, 2D lattice grid for infection model is 

combined with 3D LDS for pedestrian dynamics parameters, and 3D Lattice grid for pedestrian 
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dynamics is combined with 2D LDS parameter sweep for the infection model. The 

convergence and model implications in each case are discussed.   

3.2.1 Lattice Parameter Sweep 

The lattice-based parameter sweep is applied to the parameters of the two models 

separately. The trajectories are obtained from the pedestrian model by varying pedestrian 

maximum speed (𝑣𝑣A + 𝑣𝑣B) and allowable proximate pedestrian-pedestrian distances (𝛿𝛿1 and 

𝛿𝛿2). The resulting contact data (𝑚𝑚i) for each simulation is used in the infection model by 

varying the contact radii (R) and transmission probability (𝑃𝑃inf ).  Changing the increment sizes 

for these five parameters on a lattice grid results in six parameter sweeps with 6480, 11664, 

144900, 2125000, 4165392 and 8245776 numbers of simulations. 

Each of these simulations generates an average number of infections. For example, 

consider a case where the infective has an infectious disease (e.g. COVID-19) which is at a 

stage where the transmission probability is 0.1 and the infection radius is 72 in. Consider that 

this infective passes through the pedestrian queue shown in figure 1. If the pedestrians in the 

queue have an average unobstructed speed of 4 ft/s and maintain a distance of 3 ft between 

each other, this results in an average of 8 new infections. The average here implies that the 

position of the infective in the queue is not known aprioiri and this is varied and averaged to 

obtain the number of new infections. This result is one specific output for these specific input 

parameter values. Figure 9 shows this output as a function of frequency for the parameters 

varied on different lattice grids. 

There is uncertainty with respect to both pedestrian parameters like speed and distance 

between people, and also infection parameters like transmission probability and infection 
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spread radius. By varying all of these parameters we can get a comprehensive idea of how 

disease would spread. If these parameters are varied on a coarse grid like in Figure 3 (a), some 

of the variations are not captured. As the parameter lattice is refined more of these variations 

are captured. A similar parameter sweep with an intervention would show how the infection 

spread would change across the entire parameter space.         

Note that convergence can be visually ascertained when the shape of the histogram 

remains proportionally the same while increasing the number of simulations. In this case, 

convergence starts from Grid 4 in Figure 9(d). The convergence is also validated theoretically 

by using statistical variables mentioned earlier.  
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(a) (b) 

(c)  
 

(d) 

 
(e) (f) 

 

Figure 9. Infection distribution histograms for (a) 6480, (b) 11,664, (c) 144,900, (d) 2,125,000, 

(e) 4,165,392 and (f) 8,245,776 grid points using 5D Lattice method. 
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3.2.2 Mixed LDS and Lattice Parameter Sweep 

Here, LDS based parameter sweep is applied to the pedestrian dynamcis component of 

the multiscale model, i.e. to the three pedestrain dynamics parameters in Table 1, while the 

two infection model parameters are varied on a lattice grid. Six parameter grids with 

successively finer spacing are considered. For Grids 1 and 2 the infection lattice parameter 

spacing corresponding to Grid 2 of the 5D lattice sweep shown in Figure 9 (b) is used. For 

Grids 3-6 a finer lattice spacing corresponding to Grid 4 of the 5D lattice sweep shown in 

Figure 9 (d) is used. The LDS algorithm is used to generate sequences for the 3D pedestrian 

dynamics parameter space. This combination of parameters leads to six sequences with 4050, 

11250, 157500, 525000 and 787500 simulations respectively.  Figure 10 shows the histograms 

of the combined lattice and LDS approach.  With a low number of combinations for the speed 

and distance parameters and a coarse lattice grid for the infection parameters, the histograms 

corresponding to Grids 1 and 2 do not capture the distribution of the newly infected at high 

numbers. Grids 3-6 can capture the distribution of infections much more effectively as shown 

in Figure 10. It can be noted that the convergence is reached by 157,500 simulations in this 

case compared to the 2,125,000 simulations needed with 5D lattice parameter sweep.  
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Figure 10. Infection distribution histograms for (a) 4,050, (b) 11,250, (c) 52,500, (d) 157,500, 

(e) 525,000 and (f) 787,500 grid points using 3D pedestrian LDS combined with 2D Lattice 

method. 

 

A similar analysis is conducted with 2D LDS parameter sweep for the infection parameters, 

combined with a 3D lattice sweep for pedestrian dynamics parameters. The variation of 

parameters again results in six simulation grid sizes with 108000, 144000, 288000, 809600, 

1012000 and 1214400 simulation sequences. We find that the visual and numerical 

convergence in this case happens for Grid-4 with 809600 simulations (see Figure 11).  
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Figure 11. Infection distribution histogram for 809,600 grid points (convergence) using 3D 

pedestrian Lattice combined with 2D LDS 

3.2.3 Analysis of Convergence Measures 

Figure 12 shows the convergence metrics for the three parameter sweeps conducted in 

this work. The convergence is analyzed by comparing the four statistical measures mean, 

standard deviation, kurtosis and skewness. In the case of the 5D lattice parameter sweep, 

convergence is attained at Grid 4 with 2,125,000 simulations. The relative difference of the 

mean, standard deviation, skewness and kurtosis values are within tolerance when a finer 

lattice grid with more simulations is used.   

The values of the relative mean and standard deviation vary minimally as the number 

of simulations is increased, whereas the skewness and kurtosis increase with parameter 

refinement, which indicates the biasing of the histograms toward a high-frequency value of 3 

newly infected pedestrians. The distribution of the histogram in bell shape (Figure 10) around 

the peak accounts for the stochasticity of the model. The histogram’s peak is attained at 3 

newly infected members, which indicates that there is a highest probability of one infective 
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generating 3 new infections for the pedestrian queue studied here. However, in preventive 

planning one should account for the worst-case scenario. The plot extends to a worst case 

scenario of 24 possible infection cases with a mean of about 7 new infections. 

In the case of 2D LDS –3D Lattice parameter sweep the same mean of 6.98 with a close 

standard deviation is obtained at Grid-4 with only 809,600 simulations compared to 2,125,000 

required for 5D Lattice sweep. The convergence is reached with the same increments used 

previously for the pedestrian model parameters and only 200 low discrepancy sequences to 

cover the 2-Dimensional infection parameters space. The computational effort is less than 50% 

compared to that required for a 5D lattice. The plot in Figure 12 showing the relative difference 

of the four statistical moments behaves in a similar manner as that of 5D lattice after 

convergence is reached.  When LDS parameter sweep is applied for the three parameters in the 

pedestrian movement model convergence is attained at 157,500 simulations with a similar 

mean of 7.04. Again, at Grid 4, the relative differences of the statistical moments converge 

toward a zero value as shown in Figure 6. The parameters increments at convergence for the 

three parameter sweeps are shown in Table 2. 

Table 2. Parameters increments at convergence 

Parameters increments at 

convergence 

5D Lattice 3D Lattice-2D LDS 3D LDS-2D 

Lattice 

𝑣𝑣A + 𝑣𝑣B 0.1 0.1 

300 sequences 𝛿𝛿1 1 1 

𝛿𝛿2 1 1 

R 2 
200 sequences 

2 

Pinf 0.01 0.01 
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Figure 12. Statistical moments distribution with increment refinement for the three parameter 

sweep methods. 

 

 3.3 Discussion 

A multiphysics model combining social-force-based pedestrian dynamics and the 

individual based stochastic infection dynamics model has been formulated. The model is used 

to study the dynamics of infectious disease spread in airplanes and airports. Specific air-travel-

related policies that potentially mitigate diseases spread are identified. We find that the layout 

of winding queues in airport security check influences the number of new infections. Policies 

like using wall separators for crowd control are effective in reducing infectious disease spread. 

The modeling approach developed here is generic and can be readily modified to other directly 

transmitted infectious diseases and dense pedestrian spaces, however, the problem is 

computationally intensive as it requires large parameter sweeps. Here we have demonstrated 

application of new algorithms based on low discrepancy sequences for increasing the 

efficiency of the parameter sweep  
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Low Discrepancy Sequences have found various applications in various fields. For 

instance, multi-dimensional integrals are often evaluated using quasi-stochastic Monte Carlo 

method (Cools, 2002). Parameter sweep for high dimensional space is a closely related 

problem. A disadvantage with pseudo-random finite sequences is that they are not 

equidistributed over the domain of integration which can yield asymptotically worse 

convergence rate. The usage of increased equidistributed random sequences improves 

accuracy, but can be computationally expensive (Sen, 2006). The lattice-based space 

repartition is a uniform distribution method that partitions the domain uniformly. This method 

has a much higher computational cost compared to the pseudo-random sequences. Low 

discrepancy sequences using quasi-random numbers were originally introduced to improve 

convergence in comparison to Monte Carlo integration, but they can also address the high 

computation time problem for large parameter sweeps on parallel clusters. Low-discrepancy 

(quasi-random) sequences have an advantage of being more equidistributed than pseudo-

random numbers and are more efficient both with respect to space coverage and convergence.  

Chunduri et al (2018) used the Low Discrepancy Sequence based parameter sweep for 

analyzing pedestrian movement in an airplane boarding and show that this approach 

significantly reduces the number of simulations needed to adequately cover the parameter 

space.  Many engineering and public health problems are multidisciplinary and multiscale in 

nature. For example, consider the infectious disease spread in a pedestrian queue considered 

in this study. The contact analysis is based on pedestrian movement and mixing at one scale, 

while the infectious disease propagation is at another scale. The results of this study show that 

there is a significant reduction in computational requirements compared to lattice based 



 

Discrete Dynamics and Epidemiological Multi-Physics Models for Transportation                      39 

 

parameter sweep, when the LDS method is used in one of the sub-models. There is an order of 

magnitude improvement in the number of simulations needed to adequately cover the 

parameter space as shown in Figure 13.  Another significant advantage of LDS approach is 

that if further refinement of the parameter space is needed, the scrambled Halton sequence 

adds to the existing sequence, enabling reuse of the existing simulations. This facilitates the 

restart of parameter sweep problems. 

 

Figure 13. Number of simulations required for each parameter sweep algorithm. 

 
4. CONCLUSIONS 

In this report, we model the infectious disease spread in a pedestrian winding queue 

and analyze the parameter space using novel parameter sweep. A multiscale model is 

formulated combining social force based pedestrian dynamics model with an individual 

stochastic epidemiological model. The model is applicable to many directly transmitted 

diseases including COVID-19 based on the input parameters. A five dimensional space 
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consisting of three pedestrian dynamics parameters (free speed, cut-off distances) and two 

epidemic model parameters (transmission probability and infection radius) are considered for 

the parameter sweeps. 

 A uniform Lattice-based parameter sweep is first used to analyze the five dimensional 

parameter space. In each dimension, the increment is taken to be constant, generating a 

uniformly distributed vector of values within the range of definitions of each parameter. A 

coarse uniform partition of the parameters vectors may leave out some critical parameter 

combinations, which can lead to deficiencies in the results. This is undesirable for assessing 

preventive strategies that inhibit the disease outbreak. A fine uniform lattice is computationally 

expensive both for covering the parameter space and convergence checks. We find that 

2,125,000 simulations are needed to obtain convergence using the lattice approach.  

An effective alternative to lattice parameter sweep is a Scrambled Halton Low 

Discrepancy Sequence approach. In the multidisciplinary model used here, we find that use of 

LDS in even one of the interconnected models is effective in reducing the required number of 

simulations. When LDS is used to generate sequence for three dimensional parameter space 

for the pedestrian model and the conventional lattice is used for the infection model, the 

convergence is achieved with 157 500 simulations, which is an order of magnitude 

improvement in computational efficiency. When LDS is used for the two dimensional 

parameter space of the infection model, the parameter space can be covered using 809,600 

simulations.  

A mean of 7 newly infected individuals is obtained for the distribution of new infections over 

the entire parameter space. The number of infections may extend up to 24 cases with the 



 

Discrete Dynamics and Epidemiological Multi-Physics Models for Transportation                      41 

 

highest probability obtained for 3 cases. Given the stochasticity and uncertainty in infection 

spread and human behavior. Interventions to reduce infections need to be effective across many 

scenarios. The modeling and parameter sweep approach developed in this study can help 

identify such interventions.    

  



 

Discrete Dynamics and Epidemiological Multi-Physics Models for Transportation                      42 

 

 

REFERENCES 

 

1. Heesterbeek, H., Anderson, R.M., Andreasen, V., Bansal, S., De Angelis, D., Dye, C., 

Eames, K.T., Edmunds, W.J., Frost, S.D., Funk, S. and Hollingsworth, T.D. (2015). 

Modeling infectious disease dynamics in the complex landscape of global health. 

Science, 347(6227)  

2. Merler, S., Ajelli, M., Fumanelli, L., Gomes, M., Piontti, A., Rossi, L., Chao, D., 

Longini, I., Halloran, M. and Vespignani, A. (2015). Spatiotemporal spread of the 

2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-

pharmaceutical interventions: a computational modelling analysis. The Lancet 

Infectious Diseases, 15(2), 204-211. 

3. Namilae, S., Srinivasan, A., Mubayi, A., Scotch, M. and Pahle, R. (2017). Self-

propelled pedestrian dynamics model: Application to passenger movement and 

infection propagation in airplanes. Physica A: Statistical Mechanics and its 

Applications, 465, 248-260.  

4. Barrat, A., Cattuto, C., Tozzi, A. E., Vanhems, P., & Voirin, N. (2014). Measuring 

contact patterns with wearable sensors: methods, data characteristics and applications 

to data-driven simulations of infectious diseases. Clinical Microbiology and Infection, 

20(1), 10-16. 



 

Discrete Dynamics and Epidemiological Multi-Physics Models for Transportation                      43 

 

5. Smieszek, T., Fiebig, L., & Scholz, R. W. (2009). Models of epidemics: when contact 

repetition and clustering should be included. Theoretical biology and medical 

modelling, 6(1), 1-15. 

6. De Cao, E., Zagheni, E., Manfredi, P., & Melegaro, A. (2014). The relative 

importance of frequency of contacts and duration of exposure for the spread of 

directly transmitted infections. Biostatistics, 15(3), 470-483. 

7. Cai, J., Sun, W., Huang, J., Gamber, M., Wu, J., & He, G. (2020). Indirect virus 

transmission in cluster of COVID-19 cases, Wenzhou, China, 2020. Emerging 

infectious diseases, 26(6), 1343. 

8. Coronavirus: 5 More Cases at Osaka Concert Venues, 

https://www.nippon.com/en/news/ntv20200306001/coronavirus-5-more-cases-at-

osaka-concert-venues.html 

9. Coronavirus toll mounts at Seattle-area nursing home, 

https://www.latimes.com/world-nation/story/2020-03-09/la-na-nursing-home-

positive-coronavirus-tests 

10. Mizumoto, K., & Chowell, G. (2020). Transmission potential of the novel 

coronavirus (COVID-19) onboard the diamond Princess Cruises Ship, 2020. 

Infectious Disease Modelling, 5, 264-270. 

11. Why a South Korean Church Was the Perfect Petri Dish for Coronavirus, 

https://www.wsj.com/articles/why-a-south-korean-church-was-the-perfect-petri-dish-

for-coronavirus-11583082110 



 

Discrete Dynamics and Epidemiological Multi-Physics Models for Transportation                      44 

 

12. Xu, X. W., Wu, X. X., Jiang, X. G., Xu, K. J., Ying, L. J., Ma, C. L., & Sheng, J. F 

(2020). Clinical findings in a group of patients infected with the 2019 novel 

coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. bmj, 

368. 

13. Burstedde, C., Klauck, K., Schadschneider, A., & Zittartz, J. (2001). Simulation of 

pedestrian dynamics using a two-dimensional cellular automaton. Physica A: 

Statistical Mechanics and its Applications, 295(3-4), 507-525. 

14. Henderson, L. F. (1971). The statistics of crowd fluids. nature, 229(5284), 381-383. 

15. Okazaki, S., & Matsushita, S. (1993). A study of simulation model for pedestrian 

movement with evacuation and queuing. In International Conference on Engineering 

for Crowd Safety (Vol. 271). 

16. Helbing, D., & Molnar, P. (1995). Social force model for pedestrian dynamics. 

Physical review E, 51(5), 4282. 

17. Helbing, D., Farkas, I., & Vicsek, T. (2000). Simulating dynamical features of escape 

panic. Nature, 407(6803), 487-490. 

18. Helbing, D., Hennecke, A., & Treiber, M. (1999). Phase diagram of traffic states in 

the presence of inhomogeneities. Physical Review Letters, 82(21), 4360. 

19. Wei-Guo, S., Yan-Fei, Y., Bing-Hong, W., & Wei-Cheng, F. (2006). Evacuation 

behaviors at exit in CA model with force essentials: A comparison with social force 

model. Physica A: Statistical Mechanics and its Applications, 371(2), 658-666. 



 

Discrete Dynamics and Epidemiological Multi-Physics Models for Transportation                      45 

 

20. Helbing, D., Farkas, I. J., Molnar, P., & Vicsek, T. (2002). Simulation of pedestrian 

crowds in normal and evacuation situations. Pedestrian and evacuation dynamics, 

21(2), 21-58. 

21. Li, Z., & Jiang, Y. (2014). Friction based social force model for social foraging of 

sheep flock. Ecological modelling, 273, 55-62. 

22. Mehran, R., Oyama, A., & Shah, M. (2009, June). Abnormal crowd behavior 

detection using social force model. In 2009 IEEE Conference on Computer Vision 

and Pattern Recognition (pp. 935-942). IEEE. 

23. Zanlungo, F., Ikeda, T., & Kanda, T. (2011). Social force model with explicit 

collision prediction. Europhysics Letters, 93(6), 68005. 

24. Lämmel, G., & Plaue, M. (2014). Getting out of the way: Collision-avoiding 

pedestrian models compared to the realworld. In Pedestrian and Evacuation 

Dynamics 2012 (pp. 1275-1289). Springer, Cham. 

25. Namilae, S., Derjany, P., Mubayi, A., Scotch, M., & Srinivasan, A. (2017). 

Multiscale model for pedestrian and infection dynamics during air travel. Physical 

review E, 95(5), 052320. 

26. Derjany, P., Namilae, S., Liu, D., & Srinivasan, A. (2020). Multiscale model for the 

optimal design of pedestrian queues to mitigate infectious disease spread. PLoS one, 

15(7), e0235891. 

27. Youn, C., & Kaiser, T. (2010). Management of a parameter sweep for scientific 

applications on cluster environments. Concurrency and Computation: Practice and 

Experience, 22(18), 2381-2400. 



 

Discrete Dynamics and Epidemiological Multi-Physics Models for Transportation                      46 

 

28. Nelson, W. R., Hirayama, H., & Rogers, D. W. (1985). EGS4 code system (No. 

SLAC-265). Stanford Linear Accelerator Center, Menlo Park, CA (USA). 

29. Basney, J., Livny, M., & Mazzanti, P. (2000). Harnessing the capacity of 

computational grids for high energy physics. In Conference on Computing in High 

Energy and Nuclear Physics (pp. 610-613). 

30. Osterholm M. T et al., (2015), Transmission of Ebola viruses: what we know 

and what we do not know, MBio, 6(2), p. e00137-15. 

31. Judson, S., Prescott, J., & Munster, V. (2015). Understanding ebola virus 

transmission. Viruses, 7(2), 511–521. 

32. Nikiforuk, M., Cutts, T. A., Theriault, S. S., & Cook, B. W. (2017). Challenge 

of liquid stressed protective materials and environmental persistence of ebola 

virus. Scientific reports, 7(1), p. 4388. 

33. Clark, R. P., & de Calcina-Goff, M. L. (2009). Some aspects of the airborne 

transmission of infection. Journal of the Royal Society Interface, 6(suppl_6, 

pp. S767–S782. 

34.  Li, R. W. K., Leung, K. W. C., Sun, F. C. S., & Samaranayake, L. P. (2004). 

Severe Acute Respiratory Syndrome (SARS) and the GDP. Part I: 

Epidemiology, virology, pathology and general health issues. British dental 

journal, 197(2), p. 77. 

35. Yuen, K. Y., & Wong, S. S. Y. (2005). Human infection by avian influenza A 

H5N1. Hong Kong Medical Journal. 



 

Discrete Dynamics and Epidemiological Multi-Physics Models for Transportation                      47 

 

36. Bourouiba, L., Dehandschoewercker, E., & Bush, J. W. (2014). Violent 

expiratory events: on coughing and sneezing. Journal of Fluid Mechanics, 

745, pp. 537–563. 

37. Gupta, J. K., Lin, C. H., & Chen, Q. (2009). Flow dynamics and 

characterization of a cough. Indoor air, 19(6), pp. 517–525. 

38. Mangili, & Gendreau, M. A. (2005). Transmission of infectious diseases 

during commercial air travel. The Lancet, 365(9463), pp. 989–996. 

39. Centers for Disease Control and Prevention (2021, May). Scientific Brief: 

SARS-CoV-2 Transmission. COVID-19, 

https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/sars-cov-

2-transmission.html 

40. Friesema H. M et al., (2009). Norovirus outbreaks in nursing homes: the 

evaluation of infection control measures. Epidemiology & Infection, 137(12), 

pp. 1722–1733. 

41. Jaax, N et al., (1995). Transmission of Ebola virus (Zaire strain) to uninfected 

control monkeys in a biocontainment laboratory. The Lancet, 346(8991–

8992), pp. 1669–1671. 

42. Towner, S et al., (2004). Rapid diagnosis of Ebola hemorrhagic fever by 

reverse transcription-PCR in an outbreak setting and assessment of patient 

viral load as a predictor of outcome. Journal of virology, 78(8), pp. 4330–

4341. 



 

Discrete Dynamics and Epidemiological Multi-Physics Models for Transportation                      48 

 

43. Zhao, G. (2007). SARS molecular epidemiology: a Chinese fairy tale of 

controlling an emerging zoonotic disease in the genomics era. Philosophical 

Transactions of the Royal Society B: Biological Sciences, 362(1482), pp. 

1063–1081. 

44. Paquette. S. G et al., (2015). Influenza transmission in the mother-infant dyad 

leads to severe disease, mammary gland infection, and pathogenesis by 

regulating host responses. PLoS pathogens, 11(10), p. e1005173. 

45. Chunduri, S., Ghaffari, M., Lahijani, M. S., Srinivasan, A., & Namilae, S. (2018, 

May). Parallel low discrepancy parameter sweep for public health policy. In 2018 

18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing 

(CCGRID) (pp. 291-300). IEEE. 

46. Radović, I., Tichy, R. F., & Sobol, I. M. (1996). Quasi-Monte Carlo methods for 

numerical integration: Comparison of different low discrepancy sequences. Monte 

Carlo Methods and Applications, 2(1), 1-14. 

47. Morokoff, W. J., & Caflisch, R. E. (1994). Quasi-random sequences and their 

discrepancies. SIAM Journal on Scientific Computing, 15(6), 1251-1279. 

48. Göncü, A. (2009). Monte Carlo and quasi-Monte Carlo methods in financial 

derivative pricing.(PhD thesis) 

49. Halton, J. H. (1964). Algorithm 247: Radical-inverse quasi-random point sequence. 

Communications of the ACM, 7(12), 701-702. 

50. Cools, R. (2002). Advances in multidimensional integration. Journal of computational 

and applied mathematics, 149(1), 1-12. 



 

Discrete Dynamics and Epidemiological Multi-Physics Models for Transportation                      49 

 

51. Sen, S. K., Samanta, T., & Reese, A. (2006). Quasi-versus pseudo-random 

generators: discrepancy, complexity and integration-error based 

comparison. International Journal of Innovative Computing, Information and 

Control, 2(3), 621-651. 

52. Bender, G. (2016). Airport Terminal Security Screening Checkpoints: Still An 

Industrial Engineering Problem. Retrieved from 

https://www.arenasimulation.com/blog/post/airport-terminal-security-screening-

checkpoints-still-an-industrial-engineer. 

 


	Final Report
	June 2021
	TABLE OF CONTENTS
	EXECUTIVE SUMMARY

	1. Introduction
	2. Multiscale Modeling Approach
	2.1. Pedestrian dynamics using social force model
	2.2. Pedestrian dynamics using Anylogic - agent based modeling
	2.3. Epidemiological model
	2.4. Parameter Sweep Methods
	2.5. Application to Pedestrian Queue

	3. Results & Discussion
	3.1 Infection dynamics at the Airport Security Check
	3.2 Application of Parameter Sweep Algorithms
	3.2.1 Lattice Parameter Sweep
	3.2.2 Mixed LDS and Lattice Parameter Sweep
	3.2.3 Analysis of Convergence Measures
	3.3 Discussion

	4. Conclusions
	References

