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EXECUTIVE SUMMARY 

Hurricanes are powerful agents of destruction with significant socioeconomic impacts. A 

persistent problem due to the large-scale evacuations during hurricanes in the southeastern 

United States is the fuel shortages during the evacuation. High-volume mass evacuations, 

disruptions to the supply chain, and fuel hoarding from non-evacuees have led to localized 

fuel shortages lasting several days during recent hurricanes. Hurricane Irma in 2017, resulted 

in the largest evacuation in the nation affecting nearly 6.5 million people and saw widespread 

fuel shortages throughout the state of Florida. While news reports mention fuel shortages in 

several past hurricanes, the crowd source platform Gasbuddy has quantified the fuel 

shortages in the recent hurricanes. The analysis of this fuel shortage data suggested fuel 

shortages exhibited characteristics of an epidemic. Fundamentally, as fuelling stations were 

depleted, the latent demand spread to neighboring stations and propagated throughout the 

community, similar to an epidemiological outbreak. In this paper, a Susceptible- Infected –

Recovered (SIR) epidemic model was developed to study the evolution of fuel shortage 

during a hurricane evacuation. 

Computational models can aid in emergency preparedness and help mitigate the impacts of 

hurricanes. We have modeled the hurricane fuel shortages using the SIR epidemic model. We 

utilize the crowd-sourced data corresponding to Hurricane Irma and Florence to parametrize 

the model. An estimation technique based on Unscented Kalman filter (UKF) is employed to 

evaluate the SIR dynamic parameters. An optimal control approach for refueling based on a 

vaccination analogue is presented to effectively reduce the fuel shortages under a resource 

constraint. We find the basic reproduction number corresponding to fuel shortages in Miami 
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during Hurricane Irma to be 3.98. Our control model estimates the duration and the level of 

intervention required to mitigate the fuel shortage epidemic. 

Further, the study found a linear correlation between traffic demand during the evacuation of 

Hurricane Irma and the resulting fuel shortage data from Gasbuddy.  This correlation was 

used in conjunction with the State-wide Regional Evacuation Study Program (SRESP) 

surveys to estimate the evacuation traffic and fuel shortages for potential hurricanes affecting 

south Florida. The epidemiological SIR dynamics and optimal control methodology was 

applied to analyze the fuel shortage predictions and to develop an effective refueling strategy. 

Results indicate that evacuation of Miami Dade County in the event of a Category 3 

hurricane landfall in the region, could lead to fuel shortages in up to 90 percent of the 

refueling stations in the region. The model indicates that this can be reduced to 28 percent by 

providing relief to 75 percent of the gas stations during the first two days of the evacuation. 
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CHAPTER 1. FUEL SHORTAGES DURING HURRICANES: EPIDEMIOLOGICAL 

MODELING AND OPTIMAL CONTROL 

(This chapter has appeared as a research paper in plos one) 

INTRODUCTION 

Hurricanes are a periodic socio-economic threat for population centers in coastal 

areas globally. There is evidence for increased hurricane activity in the industrial era [1], and 

a rise in the number of high-intensity hurricanes over the past four decades [2]. Hurricanes 

have a severe socio-economic effect over extended geographic areas and impact the health 

and safety of residents in coastal regions like Florida. Computational modeling integrated 

with new social media data sources can assist in emergency preparation and evacuation 

efforts which save lives.    

In the past decade, hurricanes impacting the Southeastern United States have led to 

high volume evacuations. The 2017 evacuation from Hurricane Irma has been referred to as 

the largest evacuation in the history of the nation. During this hurricane, twenty-three 

counties in Florida issued mandatory evacuation orders, and the remaining forty-four 

counties placed voluntary orders. Analysis of Hurricane Irma traffic data obtained from the 

Florida Department of Transportation (FDOT) indicates a net exodus of 550,000 vehicles 

from the southern parts of Florida. It is estimated that approximately 6.8 million Floridians 

and tourists took to the roads in the days leading up to the storm [3]. Such mass evacuations 

have also been observed during Hurricane Florence [4], affecting North and South Carolinas, 

as well as during Hurricane Michael [5]. Hurricane evacuees tend to make longer, intercity 



 

Multiscale Model for Hurricane Evacuation and Fuel Shortage                                                          4 

 

trips to stay with friends and family outside the impacted area and to completely move out of 

the storm path [6].  

The high-volume mass evacuations, disruptions to the supply chain, long distances 

traveled, and fuel hoarding from non-evacuees have led to localized fuel shortages lasting 

several days and a cascade of problems in hurricane-affected areas. For example, evacuation 

during Hurricane Irma created a widespread fuel shortage problems days before the 

hurricane’s landfall for most of Florida and especially for South Florida. The fuel shortage 

problems gave rise to various other issues such as an unpredictable increase in fuel prices 

that exasperate and hinder evacuees living in low-income areas, traffic congestion on the 

highways due to stranded vehicles, and difficulties with emergency and medical 

transportation needs [3]. Understanding the characteristics of fuel shortage during hurricane 

evacuation is crucial to the mitigation of this problem and reducing the casualties caused by 

an imminent hurricane. The data explosion from social media enables new analysis 

approaches for this problem. For example, a recent study examines twitter data to predict fuel 

shortages during disasters [7]. 

While news reports have documented fuel shortages during the past hurricanes, 

crowd-sourced data from the social media platform Gasbuddy [8] has quantified the 

shortages during recent hurricanes. The progression of fuel shortage through a geographic 

area and the return to normal fuel supply has similarities with the spread of infectious 

diseases. For example, a refueling station in the vicinity of another station that is out of gas is 

more likely to be depleted of fuel soon, similar to infectious disease spread.   Sociologists 

and computational scientists have long studied social events using biological models of 
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infectious disease spread. Modeling interconnected social events as contagion leads to the 

analysis of these events in a new light. For example, a recent study by Towers et al [9] 

utilized epidemic modeling to examine mass killings related to gun violence and found that 

the likelihood of a mass killing increased because of a preceding occurrence of a similar 

event. Contagious disease modeling has been used to study several social phenomena that 

show epidemic like behavior such as: election campaign donations [10], spread of emotional 

influence in social media [11], suicidal ideation [12], spread of web malware [13], social 

contagion of altruism [14], etc. Recent studies have combined the biological and social 

contagious behaviors, e.g. Fu and coworkers [15] studied the interaction between the spread 

of the influenza infection, and the corresponding social media trends about flu-vaccine. 

These studies point to the success of epidemiological models in examining the dynamics of 

problems involving social contagion. 

The well-studied classical compartmental epidemic models used in most of the above 

studies such as SIS (Susceptible-Infected-Susceptible), SIR (Susceptible-Infected-

Recovered) and SIRS (Susceptible-Infected-Recovered-Susceptible) divide the host 

population into susceptible, infected and recovered compartments with a set of differential 

equations describing dynamics between these different compartments [16]. In this study, we 

apply the SIR dynamics to model fuel shortage during hurricane evacuation as an epidemic 

and examine the infection dynamics as shown in the schematic in FIG 1. We further apply 

optimal control theory to determine an optimal refueling strategy utilizing an SIR with 

vaccination analogue to estimate the refueling needs to mitigate the epidemic, subject to 

resource constraints.  
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We utilize the data from the crowd sourced platform Gasbuddy for Hurricane Irma to 

parametrize the model. The unique advantage of this data source is the easy access to the on-

the-fly data as the evacuation and fuel shortages are evolving during a hurricane. While the 

Gasbuddy fuel shortage data exhibit the characteristics of an epidemic, the optimal refueling 

model is based on a time invariant continuous SIR model represented by continuous ordinary 

differential equations [17, 18]. To address this problem, we use the Unscented Kalman Filter 

(UKF) algorithm to numerically estimate the SIR model parameters that characterize the 

dynamics as a continuous SIR model, while closely resembling the fuel shortage empirical 

data. To the best of our knowledge, this is the first application of epidemiological modeling 

and optimal control algorithms to the problem of fuel shortages during hurricanes. The 

mathematical development for the problem is presented first, followed by the results and 

discussions. 

METHODS 

Data Sources 

The fuel shortage data for this study were obtained from Gasbuddy news releases 

during evacuation due to Hurricanes Irma and Florence. Gasbuddy is an online database 

containing vital roadside information on more than 150,000 fuel stations [8]. Gasbuddy 

played a crucial role during Hurricanes Irma and Florence by connecting evacuees and 

providing real-time information on fuel availability in the affected areas during the 

evacuation. A recent article in The Wall Street Journal reported that the Gasbuddy Mobile 

app was downloaded 300,000 times during the events leading up to Hurricane Irma, 

compared to 30,000 times on a typical day [19]. One problem with crowd sourced data is the 
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reliability of the data. Gasbuddy cross-checks the reported data with the user’s location 

information to improve reliability [19].  Levin et al [20] report that reliability of volunteer 

generated data is improved by using multiple sources.    

Hurricane Irma made landfall near Cudjoe Key, on September 10th, 2017 at 9:00 AM 

ET. Another landfall occurred on September 10th 3:35 PM at Marco Island near Naples [21]. 

This led to large scale evacuation of affected areas in the preceding days. Gasbuddy reported 

the data about the percentage of refueling stations out of fuel in major cities in Florida 

including Fort Myers- Naples, Miami-Fort Lauderdale, Tampa-St Petersburg, Orlando and 

Jacksonville from 9/6/2017 to 9/18/2017.  Hurricane Florence, a slow-moving storm, 

damaged several regions in North and South Carolina in September 2018 and resulted in fuel 

shortages as high as 70% in some cities like Wilmington, North Carolina. The data from 

these hurricanes were used to parametrize our model. In addition, we use traffic data from the 

Florida Department of Transportation (FDOT) [22] and demographic data from the United 

States Census Bureau [23] in this work.  

SIR Dynamics for Fuel Shortages 

In the SIR model, schematically shown in FIG 1 (a), we treat the percentage of 

refueling stations without gasoline as “infected (I)”, percentage of refueling stations with 

gasoline that are prone to running out of gasoline as “susceptible (S)” and percentage filled 

with gasoline after running out of fuel as “recovered (R)”. The recovered refueling stations 

do not get re-infected (experience fuel shortage) in this case as the model and the on-ground 

situation represents a short-term outbreak. In terms of differential equations, the dynamic 

model for the SIR is: 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝛽𝛽𝑑𝑑(𝑑𝑑)𝐼𝐼(𝑑𝑑) 

 

Eq. 1 

 

  

𝑑𝑑𝐼𝐼
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝑑𝑑(𝑑𝑑)𝐼𝐼(𝑑𝑑) − 𝛾𝛾𝐼𝐼(𝑑𝑑) 
Eq. 2 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝐼𝐼(𝑑𝑑) 
Eq. 3 

The parameters β and γ represent the transmission rate per capita and recovery rate, which in 

the current context represent the rate at which the susceptible refueling stations are emptying 

and the empty gas stations are resupplied respectively. The quantity 𝛽𝛽𝑑𝑑(0)/𝛾𝛾 is a threshold 

quantity known as a basic reproduction number (𝑑𝑑0). Here, we define it as the % of refueling 

stations without fuel in a region, because of 1% stations going out of fuel.  

We use the crowdsourced data from the Gasbuddy website in conjunction with the Unscented 

Kalman Filter (UKF) to estimate the 𝛽𝛽 and 𝛾𝛾 parameters. The Kalman Filter [24, 25], 

developed in the early 1960’s, is an effective technique designed to estimate the parameters 

with measurement correction from empirical data.  One of the earliest usages of the Kalman 

Filter was in the Apollo program [26], and it has seen widespread use in applications such as 

spacecraft reentry [27] and autonomous navigation through obstacle environments [28], as 

well as a diverse array of other engineering and epidemiological applications [29-31].  The 

use of the Kalman Filter for this parameter estimation problem, as opposed to conventional 

curve fitting techniques, facilitates bounding of the dynamic parameters. The best fit constant 

values for β and γ from all possible values are then used to develop the time invariant 
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continuous SIR data which closely resemble the empirical data.  Different variations of 

Kalman Filter algorithms, such as the Extended Kalman Filter (EKF) [32], Ensemble Kalman 

Filter (EnKF) [33, 34] , and Sigma Point or Unscented Kalman Filter (UKF) [35], have been 

developed and used for various applications in engineering and epidemiology [24-35].  

While the classical Kalman filter provides optimal state and parameter estimation for linear 

systems subject to Gaussian white noise, the process equations for the SIR problem, shown in 

Eqs 4 and 5, are inherently nonlinear, and the process and measurement noise are not 

necessarily Gaussian.  The EKF algorithm can address nonlinearity by using the nonlinear 

dynamics for state propagation along with linearized dynamics to propagate the error 

covariance; however, the EKF assumes a Gaussian noise model.  The Sigma Point or 

Unscented Kalman Filter (UKF) can accommodate nonlinear dynamics and it is not 

constrained by the assumption of Gaussian white noise.  Instead, the UKF characterizes the 

estimation error by propagating a set of sigma points through the nonlinear dynamics model.  

Therefore, the UKF is used in this work for the estimation of the SIR model parameters. 

These data are then used in the optimal control algorithm to estimate an optimal refueling 

strategy. 
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Figure 1.1(a). SIR dynamics model repurposed to study fuel shortages during hurricane 

evacuation (b) SIR dynamics model augmented to include vaccination rate as per capita 

rate of refueling, uv. 

By employing the fuel shortage data from Gasbuddy for the measurement update, we can 

simultaneously generate the synthetic data for the mechanistic SIR Model and estimate the 

parameters 𝛽𝛽 and 𝛾𝛾. The differential equations of the Fuel Shortage SIR model are then 

converted to discrete time form at different days, k, using the Euler Method. The state vector 

that is input into the UKF is defined as 𝑋𝑋𝑘𝑘 = [𝑑𝑑𝑘𝑘, 𝐼𝐼𝑘𝑘,𝛽𝛽𝑘𝑘, 𝛾𝛾𝑘𝑘]𝑇𝑇. 

That is, the states are susceptible, infected, and recovered refueling stations and the 

parameters β and γ are the rates at which susceptible refueling stations are infected and 

infected refueling stations are recovered. The process equations, using the Euler method, for 

the UKF are then setup as shown below:  



 

Multiscale Model for Hurricane Evacuation and Fuel Shortage                                                          11 

 

𝑑𝑑𝑘𝑘 = 𝑑𝑑𝑘𝑘−1 + (−𝛽𝛽𝑘𝑘−1𝑑𝑑𝑘𝑘−1𝐼𝐼𝑘𝑘−1)𝑑𝑑𝑑𝑑 Eq. 4 

𝐼𝐼𝑘𝑘 = 𝐼𝐼𝑘𝑘−1 + (𝛽𝛽𝑘𝑘−1𝑑𝑑𝑘𝑘−1𝐼𝐼𝑘𝑘−1 − 𝛾𝛾𝑘𝑘−1𝐼𝐼𝑘𝑘−1)𝑑𝑑𝑑𝑑 Eq. 5 

𝛽𝛽𝑘𝑘 = 𝛽𝛽𝑘𝑘−1 Eq. 6 

𝛾𝛾𝑘𝑘 = 𝛾𝛾𝑘𝑘−1 Eq. 7 

. The output then takes the form of: 

𝑦𝑦1,𝑘𝑘 = 𝑑𝑑𝑘𝑘 Eq. 8 

𝑦𝑦2,𝑘𝑘 = 𝐼𝐼𝑘𝑘 Eq. 9 

The Unscented Kalman Filter relies on the unscented transformation, which determines the 

statistics of an L dimensional random variable x through a nonlinear transformation y=f(x). It 

is assumed that the state vector x has a known initial mean �̅�𝑥 and initial covariance 𝑃𝑃0. The 

main goal of the UKF is to reduce the error in state estimation from a priori (k-1) value to a 

posteriori (k) value in each successive time interval dt for N time steps. Here, for Hurricane 

Irma, the entire time interval is 12 days with a time step of 0.25 days. For Hurricane 

Florence, more refined data were available, so we used a time step of 1 hour for the interval 

of 18 days. The statistics of the function y can then be determined using the procedures listed 

in the UKF pseudo-code as shown in Table 1.  

In Step 1, we initialize the UKF by providing the initial values for state vector Xk for 

t=0 days (k=1). We used a set of initial values of Sk and Ik from the Gasbuddy fuel shortage 

data for the first day. Initial values for β and γ were set to zero as they are to be determined 
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through the estimation process. The initial covariance, P0 was set to the identity matrix with 

the same dimension as the state vector Xk.  

The Q and R are the process and measurement noise covariance matrices in the 

estimation and update steps (Step 3 to Step 8) shown in Table 1. The cross-covariance 

matrices 𝑃𝑃𝑘𝑘
𝑦𝑦𝑦𝑦 𝑎𝑎𝑎𝑎𝑑𝑑 𝑃𝑃𝑘𝑘

𝑥𝑥𝑦𝑦  were initialized to R and the identity matrices respectively. The 

model update step entails propagating a set of 2L+1(where L is the number of states) sigma 

points through the nonlinear dynamics model (Eqs 4-7). The mean of the state estimate 

(𝑋𝑋�𝑘𝑘|𝑘𝑘−1 ) and the error covariance matrix (𝑃𝑃𝑘𝑘|𝑘𝑘−1) are then updated as a weighted 

combination of the propagated sigma points as shown in Step 4. The weighting matrices are 

computed as shown in Step 2. The measurement update is performed by first generating a set 

of measurements (𝜓𝜓𝑘𝑘|𝑘𝑘−1
𝑖𝑖 ) by propagating the sigma points through the output equation (Step 

5). The current measurement (𝑌𝑌�𝑘𝑘|𝑘𝑘−1) is computed as a weighted combination of these 

propagated sigma points (𝜓𝜓𝑘𝑘|𝑘𝑘−1
𝑖𝑖 ). The covariance and cross covariance estimation matrices 

are then updated as shown in Step 6, which in-turn are used to update the Kalman gain in 

Step 7. Finally, the mean of the state estimate and the error covariance matrix are updated in 

the last step. This process is then repeated until k=N. The states Sk and Ik are being updated at 

every time step, as are the states β and γ, defined by their relation to Sk and Ik in Eqs. 4 and 5. 

In this process we can estimate the transmission rate (β) and recovery rate (γ) for every time 

step from the data provided by Gasbuddy. 
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Table 1.1. Unscented-Kalman Filter estimation process 

Step Equation Comment 

1. Initialization 

𝑋𝑋0 = 𝐸𝐸[𝑋𝑋𝑘𝑘=1], 𝑋𝑋�0 = 𝐸𝐸(𝑋𝑋�𝑘𝑘=1) , 𝑃𝑃0 = 𝐸𝐸 ��𝑋𝑋𝑘𝑘=1 −

𝑋𝑋�𝑘𝑘=1��𝑋𝑋𝑘𝑘=1 − 𝑋𝑋�𝑘𝑘=1�
𝑇𝑇� 

𝑄𝑄 = 𝑤𝑤1 = [[1𝑒𝑒1 1𝑒𝑒1 1𝑒𝑒2 1𝑒𝑒2] ∗ 𝐼𝐼𝑛𝑛 ×𝑛𝑛 , 𝑑𝑑 =

[1𝑒𝑒1 1𝑒𝑒1] ∗ 𝐼𝐼𝑝𝑝×𝑝𝑝 

�𝑃𝑃𝑘𝑘
𝑦𝑦𝑦𝑦�

𝑖𝑖=1
= 𝑑𝑑 

�𝑃𝑃𝑘𝑘
𝑥𝑥𝑦𝑦�

𝑖𝑖=1
= [0]𝐿𝐿×2 

 

k=1,2…, N. 

N= dimension 

of entire time 

interval 

divided in dt, 

time steps. 

i=1,2…, 

2L+1. 

L= number of 

states in Xk. 

2. Define 

Scaling 

Factor and 

compute 

weighting 

matrices 

Scaling factors 

𝛼𝛼 = 1,𝛽𝛽 = 2  , 𝜅𝜅 = 0  

𝜆𝜆 = 𝛼𝛼2(𝐿𝐿 + 𝜅𝜅) − 𝐿𝐿,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐿𝐿 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒 𝑜𝑜𝑜𝑜 𝑋𝑋𝑘𝑘  

Weighting Matrix 

𝑊𝑊𝑚𝑚
1 = 𝜆𝜆

𝐿𝐿+𝜆𝜆
   

𝑊𝑊𝑐𝑐
1 = 𝜆𝜆

𝐿𝐿+𝜆𝜆
+ (1 − 𝛼𝛼2 + 𝛽𝛽) ,  

𝑊𝑊𝑚𝑚
𝑗𝑗 = 𝑊𝑊𝑐𝑐

𝑗𝑗 =
1

[2(𝐿𝐿 + 𝜆𝜆)]   𝑜𝑜𝑜𝑜𝑒𝑒  𝑗𝑗 = 2, … . ,2𝐿𝐿 + 1 

Assume 

Gaussian 

distribution 
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3. Generation 

of Sigma 

Points 

�𝑃𝑃𝑘𝑘 = 𝐶𝐶ℎ𝑜𝑜𝑜𝑜(𝑃𝑃𝑘𝑘)  

𝜒𝜒𝑘𝑘−1 = [𝑋𝑋𝑘𝑘−1      𝑋𝑋𝑘𝑘−1 + �(𝐿𝐿 + 𝜆𝜆)𝑃𝑃𝑘𝑘−1      𝑋𝑋𝑘𝑘−1 −

�(𝐿𝐿 + 𝜆𝜆)𝑃𝑃𝑘𝑘−1 ]  

Use the known nonlinear system equation f(x) in 

Eq 4,5,6 and 7 to transform the sigma points into: 

𝜒𝜒𝑘𝑘|𝑘𝑘−1
𝑖𝑖 = 𝑜𝑜�𝑋𝑋𝑘𝑘−1𝑖𝑖 �     𝑜𝑜𝑜𝑜𝑒𝑒   𝑠𝑠 = 1,2, … . ,2𝐿𝐿 + 1 

Where Chol is 

a MATLAB 

function for 

the Cholesky 

Decompositio

n 

4. Compute 

mean and 

covariance 

𝑋𝑋�𝑘𝑘|𝑘𝑘−1 = � 𝑊𝑊𝑚𝑚
𝑖𝑖 𝜒𝜒𝑘𝑘|𝑘𝑘−1

𝑖𝑖
2𝐿𝐿+1

𝑖𝑖=1

 

𝑃𝑃𝑘𝑘|𝑘𝑘−1 = � 𝑊𝑊𝑐𝑐
𝑖𝑖�𝑋𝑋𝑘𝑘|𝑘𝑘−1

𝑖𝑖
2𝐿𝐿+1

𝑖𝑖=1

− 𝑋𝑋�𝑘𝑘|𝑘𝑘−1��𝑋𝑋𝑘𝑘|𝑘𝑘−1
𝑖𝑖 − 𝑋𝑋�𝑘𝑘|𝑘𝑘−1�

𝑇𝑇
 

𝑋𝑋�𝑘𝑘|𝑘𝑘−1 mean 

of predicted 

state 

 

5. Generate 

Observation

s 

𝜓𝜓𝑘𝑘|𝑘𝑘−1
𝑖𝑖 = ℎ�𝜒𝜒𝑘𝑘|𝑘𝑘−1

𝑖𝑖 �  

𝑌𝑌�𝑘𝑘|𝑘𝑘−1 = � 𝑊𝑊𝑚𝑚
𝑖𝑖𝜓𝜓𝑘𝑘|𝑘𝑘−1

𝑖𝑖
2𝐿𝐿+1

𝑖𝑖=1

 

𝑌𝑌�𝑘𝑘|𝑘𝑘−1 mean 

of predicted 

output  

 

6. Covariance 

and cross 

covariance 

estimation  

𝑃𝑃𝑘𝑘
𝑦𝑦𝑦𝑦 = ∑ 𝑊𝑊𝑐𝑐

𝑖𝑖 �𝜓𝜓𝑘𝑘|𝑘𝑘−1
𝑖𝑖 − 𝑌𝑌�𝑘𝑘|𝑘𝑘−1��𝜓𝜓𝑘𝑘|𝑘𝑘−1

𝑖𝑖 −2𝐿𝐿+1
𝑖𝑖=1

𝑌𝑌�𝑘𝑘|𝑘𝑘−1�
𝑇𝑇
  

𝑃𝑃𝑘𝑘
𝑥𝑥𝑦𝑦 = � 𝑊𝑊𝑐𝑐

𝑖𝑖�𝑋𝑋𝑘𝑘|𝑘𝑘−1
𝑖𝑖 − 𝑋𝑋�𝑘𝑘|𝑘𝑘−1��𝜓𝜓𝑘𝑘|𝑘𝑘−1

𝑖𝑖 − 𝑌𝑌�𝑘𝑘|𝑘𝑘−1�
𝑇𝑇

2𝐿𝐿+1

𝑖𝑖=1
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7. Compute 

Variable 

Kalman 

Gain matrix 

𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘
𝑥𝑥𝑦𝑦�𝑃𝑃𝑘𝑘

𝑦𝑦𝑦𝑦�−1 Required for 

updating state 

prediction and 

reducing 

estimation 

error. 

8. Update 

covariance 

and state 

matrices 

𝑋𝑋𝑘𝑘 = 𝑋𝑋�𝑘𝑘|𝑘𝑘−1 + 𝐾𝐾𝑘𝑘�𝑦𝑦𝑘𝑘 − 𝑌𝑌�𝑘𝑘|𝑘𝑘−1�  

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑦𝑦𝑘𝑘 𝑑𝑑ℎ𝑒𝑒 𝑜𝑜𝑜𝑜𝑑𝑑𝑜𝑜𝑜𝑜𝑑𝑑 𝑚𝑚𝑎𝑎𝑑𝑑𝑒𝑒𝑠𝑠𝑥𝑥  𝑜𝑜𝑜𝑜𝑒𝑒 𝑒𝑒𝑎𝑎𝑒𝑒ℎ 𝑑𝑑𝑠𝑠𝑚𝑚𝑒𝑒 𝑠𝑠𝑑𝑑𝑒𝑒𝑜𝑜 𝑘𝑘.  

𝑃𝑃𝑘𝑘 = 𝑃𝑃𝑘𝑘|𝑘𝑘−1 − 𝐾𝐾𝑘𝑘𝑃𝑃𝑘𝑘
𝑦𝑦𝑦𝑦𝐾𝐾𝑘𝑘𝑇𝑇 

Step 2-8 is 

repeated for 

each time step 

k. 

 

Optimal Control Algorithm for the Refueling Strategy 

The Unscented Kalman Filter provides estimates of the parameters β and γ, which are 

constant scalar values that can be used to develop a continuous time invariant dynamic model 

to characterize the fuel shortage as an infection. We now utilize this dynamic model to 

determine an optimal refueling strategy, which is modeled like a vaccination intervention, to 

mitigate the hurricane fuel shortage.  The resulting control law is a bang-bang control policy.  

Bang-bang controllers [36] typically arise in minimum-time problems with constrained 

inputs, such as spacecraft maneuvers using thruster control [37, 38].  The result is a control 

input that corresponds to the maximum or minimum value with a finite number of switching 

times. 

The SIR dynamics model is augmented to include vaccination [18] as shown below: 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝛽𝛽𝑑𝑑(𝑑𝑑)𝐼𝐼(𝑑𝑑) − 𝑜𝑜𝑣𝑣𝑑𝑑(𝑑𝑑) 

𝑑𝑑𝐼𝐼
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝑑𝑑(𝑑𝑑)𝐼𝐼(𝑑𝑑) − 𝛾𝛾𝐼𝐼(𝑑𝑑) 

Eq. 10 

 

Eq. 11 

The term uv in Eq. 10 is the per-capita rate of refueling. Keeping congruency with our model 

parameters, uv is the rate at which susceptible gas stations are prevented from being emptied 

out by external intervention in the form of additional fuel supply. The control variable uv is 

bounded by practical constraints. The level of uv that can be attained at any given time 

depends on the infrastructure that is in place to overcome fuel shortage problems such as the 

amount of gasoline in reserve in proximity to the area in question, the availability of transport 

vehicles etc. This resource constraint is addressed through the optimal control algorithm. 

Let r(t) denote the total number of refueled fuel stations that were susceptible to 

becoming empty (infected) at time, t. The actual values of S, I and r will depend on the 

specific choice of the control 𝑜𝑜𝑣𝑣. Then, if 𝑒𝑒𝑚𝑚𝑚𝑚𝑥𝑥 ≥ 0 is fixed, 𝑜𝑜𝑣𝑣 needs to be determined for 

the augmented SIR model in Eq 10 that minimizes the cost function (J) shown in Equation 12 

below. Similar approaches have been used for the vaccination analogue for infectious disease 

modeling [18]. 

𝐽𝐽 = � 𝛽𝛽𝑑𝑑(𝑑𝑑)𝐼𝐼(𝑑𝑑)
𝑇𝑇

𝑡𝑡0
 𝑑𝑑𝑑𝑑 

Eq. 12 

subject to 𝑑𝑑(𝑑𝑑0) = 𝑑𝑑0, 𝐼𝐼(𝑑𝑑0) = 𝐼𝐼0 , 𝐼𝐼(𝑇𝑇) = 𝐼𝐼𝑚𝑚𝑖𝑖𝑛𝑛, 𝑒𝑒(𝑇𝑇) = 𝑒𝑒𝑚𝑚𝑚𝑚𝑥𝑥,𝑜𝑜𝑣𝑣(𝑑𝑑) ∈ �0,𝑜𝑜𝑣𝑣,𝑚𝑚𝑚𝑚𝑥𝑥� for all 𝑑𝑑 ∈

[0,𝑇𝑇]. Where, 𝐼𝐼𝑚𝑚𝑖𝑖𝑛𝑛 is a threshold constant chosen to indicate the end of the fuel shortage 

problem at some arbitrary final time T. 
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This optimal problem can be solved by applying Pontryagin’s Maximum Principle 

(PMP) [39]. In its general sense, consider the following optimal control problem with 

isoperimetric constraints: 

𝑚𝑚𝑠𝑠𝑎𝑎 𝐽𝐽 = 𝜙𝜙�𝑇𝑇, 𝑥𝑥(𝑇𝑇)� + ∫ 𝐿𝐿𝑇𝑇𝑡𝑡0 (𝑑𝑑, 𝑥𝑥,𝑜𝑜) 𝑑𝑑𝑑𝑑     Eq. 13 

Such that 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

�̇�𝑥 = 𝑜𝑜(𝑑𝑑, 𝑥𝑥,𝑜𝑜), 𝑥𝑥(𝑑𝑑0) = 𝑥𝑥0,𝑜𝑜 ∈  𝑈𝑈,

� 𝐿𝐿(𝑑𝑑, 𝑥𝑥,𝑜𝑜)𝑑𝑑𝑑𝑑 = � 𝛽𝛽𝑑𝑑(𝑑𝑑)𝐼𝐼(𝑑𝑑)
𝑇𝑇

𝑡𝑡0
 𝑑𝑑𝑑𝑑

𝑇𝑇

𝑡𝑡0
, (𝐼𝐼𝑎𝑎𝑑𝑑𝑒𝑒𝐼𝐼𝑒𝑒𝑎𝑎𝑜𝑜 𝑒𝑒𝑜𝑜𝑠𝑠𝑑𝑑 𝐹𝐹𝑜𝑜𝑎𝑎𝑒𝑒𝑑𝑑𝑠𝑠𝑜𝑜𝑎𝑎)

𝑠𝑠𝑜𝑜𝑠𝑠𝑗𝑗𝑒𝑒𝑒𝑒𝑑𝑑 𝑑𝑑𝑜𝑜 𝑒𝑒𝑒𝑒𝑠𝑠𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑜𝑜𝑎𝑎𝑠𝑠𝑑𝑑𝑒𝑒𝑎𝑎𝑠𝑠𝑎𝑎𝑑𝑑

𝑑𝑑 = � 𝑜𝑜𝑣𝑣𝑑𝑑(𝑑𝑑)
𝑇𝑇

𝑡𝑡0
 𝑑𝑑𝑑𝑑 ≤ 𝑒𝑒𝑚𝑚𝑚𝑚𝑥𝑥(𝑑𝑑𝑒𝑒𝑠𝑠𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒 𝐶𝐶𝑜𝑜𝑎𝑎𝑠𝑠𝑑𝑑𝑒𝑒𝑎𝑎𝑠𝑠𝑎𝑎𝑑𝑑𝑠𝑠)

𝜓𝜓�𝑇𝑇, 𝑥𝑥(𝑇𝑇)� = 0 (𝑇𝑇𝑒𝑒𝑒𝑒𝑚𝑚𝑠𝑠𝑎𝑎𝑎𝑎𝑜𝑜 𝐶𝐶𝑜𝑜𝑎𝑎𝑑𝑑𝑒𝑒𝑎𝑎𝑠𝑠𝑎𝑎𝑑𝑑)
  {𝜙𝜙𝑥𝑥 + [𝜙𝜙𝑥𝑥]𝑇𝑇𝜗𝜗 − 𝜆𝜆(𝑇𝑇)}𝑇𝑇|𝑇𝑇  𝑑𝑑𝑥𝑥(𝑇𝑇) + {𝜙𝜙𝑇𝑇 + 𝜗𝜗𝑇𝑇𝜓𝜓𝑇𝑇 + 𝐻𝐻}|𝑇𝑇  𝑑𝑑𝑇𝑇 = 0 

(𝑇𝑇𝑒𝑒𝑎𝑎𝑎𝑎𝑠𝑠𝑇𝑇𝑒𝑒𝑒𝑒𝑠𝑠𝑎𝑎𝑜𝑜𝑠𝑠𝑑𝑑𝑦𝑦 𝐶𝐶𝑜𝑜𝑎𝑎𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠𝑜𝑜𝑎𝑎𝑠𝑠)

 

 

Eq. 14 

where 𝑥𝑥 ∈ ℝ𝑛𝑛 is the state vector, 𝑜𝑜 ∈ ℝ𝑚𝑚 is the control vector, 𝜓𝜓 is a vector function, and 𝜙𝜙, 

L are scalar functions. r is constant vector and U is an admissible control region, with 

continuous partial derivatives w.r.t all its arguments [18].  

From the optimal control problem above, the PMP states: if u*(t) is an optimal 

control with x*(t) being the optimal trajectory, there exists a non-trivial solution of vector 

functions 𝜆𝜆 (costate functions) and nontrivial vector constants 𝜆𝜆1, 𝜆𝜆2 𝑎𝑎𝑎𝑎𝑑𝑑 𝜗𝜗 such that the 

conditions discussed below are met: 
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⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ �̇�𝑥 = 𝑜𝑜(𝑑𝑑, 𝑥𝑥,𝑜𝑜), �̇�𝜆 = −𝐻𝐻𝑥𝑥𝑇𝑇(𝑑𝑑, 𝑥𝑥,𝑜𝑜, 𝜆𝜆),
𝐻𝐻(𝑑𝑑, 𝑥𝑥,𝑜𝑜∗, 𝜆𝜆, 𝜆𝜆1, 𝜆𝜆2) ≥ 𝐻𝐻(𝑑𝑑, 𝑥𝑥,𝑜𝑜, 𝜆𝜆, 𝜆𝜆1, 𝜆𝜆2),∀ 𝑎𝑎𝑑𝑑𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑒𝑒 𝑜𝑜,

𝑥𝑥(𝑑𝑑0) = 𝑥𝑥0,𝜓𝜓�𝑇𝑇, 𝑥𝑥(𝑇𝑇)� = 0,
𝐻𝐻�𝑇𝑇, 𝑥𝑥(𝑇𝑇),𝑜𝑜(𝑇𝑇), 𝜆𝜆(𝑇𝑇), 𝜆𝜆1(𝑇𝑇), 𝜆𝜆2(𝑇𝑇)� = −[𝐺𝐺𝑇𝑇𝑇𝑇(𝑇𝑇, 𝑥𝑥(𝑇𝑇),𝜗𝜗)]𝑇𝑇,

𝜆𝜆(𝑇𝑇) = 𝐺𝐺𝑥𝑥(𝑇𝑇)
𝑇𝑇 (𝑇𝑇, 𝑥𝑥(𝑇𝑇),𝜗𝜗),

� 𝐿𝐿1(𝑑𝑑, 𝑥𝑥,𝑜𝑜)𝑑𝑑𝑑𝑑 = � 𝛽𝛽𝑑𝑑(𝑑𝑑)𝐼𝐼(𝑑𝑑)
𝑇𝑇

𝑡𝑡0
 𝑑𝑑𝑑𝑑,� 𝑑𝑑(𝑑𝑑, 𝑥𝑥,𝑜𝑜)𝑑𝑑𝑑𝑑 ≤ 𝑒𝑒𝑚𝑚𝑚𝑚𝑥𝑥,

𝑇𝑇

𝑡𝑡0

𝑇𝑇

𝑡𝑡0

𝜆𝜆2𝑇𝑇 �� 𝑑𝑑(𝑑𝑑, 𝑥𝑥,𝑜𝑜)𝑑𝑑𝑑𝑑 − 𝑒𝑒𝑚𝑚𝑚𝑚𝑥𝑥

𝑇𝑇

𝑡𝑡0
� = 0, 𝜆𝜆2 ≥ 0,

  

 

Eq. 15 

where 𝐻𝐻(𝑑𝑑, 𝑥𝑥,𝑜𝑜, 𝜆𝜆, 𝜆𝜆1, 𝜆𝜆2) = 𝐿𝐿(𝑑𝑑, 𝑥𝑥,𝑜𝑜) + 𝜆𝜆𝑇𝑇(𝑑𝑑)𝑜𝑜(𝑑𝑑, 𝑥𝑥,𝑜𝑜) + 𝜆𝜆1𝐿𝐿1(𝑑𝑑, 𝑥𝑥,𝑜𝑜) + 𝜆𝜆2𝑇𝑇𝑑𝑑(𝑑𝑑, 𝑥𝑥,𝑜𝑜) is the 

Hamiltonian, and 𝐺𝐺�𝑇𝑇, 𝑥𝑥(𝑇𝑇)� = 𝜙𝜙�𝑇𝑇, 𝑥𝑥(𝑇𝑇)� + 𝜗𝜗𝑇𝑇𝜓𝜓(𝑇𝑇, 𝑥𝑥(𝑇𝑇)). 

If the system in Eq 15 is time-invariant, the Hamiltonian, H, is constant [17] such that: 

𝐻𝐻(𝑑𝑑, 𝑥𝑥,𝑜𝑜, 𝜆𝜆, 𝜆𝜆1, 𝜆𝜆2) = 𝑒𝑒𝑜𝑜𝑎𝑎𝑠𝑠𝑑𝑑,∀𝑑𝑑 ∈ [𝑑𝑑0,𝑇𝑇]. 

Optimal Refueling Strategy 

The deterministic SIR model for refueling with limited resources can be modeled by the 

governing equations shown in Eq. 11 with the addition of the resource constraint derivative:  

�̇�𝑒 = 𝑜𝑜𝑣𝑣𝑑𝑑 Eq. 16 

If we construct this problem as a maximization problem, then Pontryagin’s Maximum 

Principle (PMP) can be used to develop the relationship: 

𝐻𝐻(𝑑𝑑) = −𝜆𝜆𝛽𝛽𝑑𝑑𝐼𝐼 − 𝜆𝜆𝑆𝑆𝛽𝛽𝑑𝑑𝐼𝐼 − 𝜆𝜆𝑆𝑆𝑜𝑜𝑣𝑣𝑑𝑑 + 𝜆𝜆𝐼𝐼𝛽𝛽𝑑𝑑𝐼𝐼 − 𝜆𝜆𝐼𝐼𝛾𝛾𝐼𝐼 + 𝜆𝜆𝑟𝑟𝑜𝑜𝑣𝑣𝑑𝑑 Eq. 17 

Where the costate equations are satisfied as follows: 

𝜆𝜆�̇�𝑆 = −(𝜆𝜆𝐼𝐼 − 𝜆𝜆 − 𝜆𝜆𝑆𝑆)𝛽𝛽𝐼𝐼 − (𝜆𝜆𝑟𝑟 − 𝜆𝜆𝑆𝑆)𝑜𝑜𝑣𝑣 Eq. 18 

𝜆𝜆�̇�𝐼 = −(𝜆𝜆𝐼𝐼 − 𝜆𝜆 − 𝜆𝜆𝑆𝑆)𝛽𝛽𝐼𝐼 + 𝜆𝜆𝐼𝐼𝛾𝛾 

𝜆𝜆�̇�𝑧 = 0 

 



 

Multiscale Model for Hurricane Evacuation and Fuel Shortage                                                          19 

 

For this problem, the terminal cost and terminal constraint is 0. Hence, the transversality 

conditions can be reduced to: 

𝜆𝜆𝑇𝑇(𝑇𝑇)𝑑𝑑𝑥𝑥(𝑇𝑇) + 𝐻𝐻(𝑇𝑇)𝑑𝑑𝑇𝑇 = 0 Eq. 19 

Where 𝑑𝑑𝑥𝑥(𝑑𝑑) = [0,𝑑𝑑𝑑𝑑(𝑑𝑑), 0, 0]𝑇𝑇 and 𝜆𝜆𝑇𝑇(𝑇𝑇) = [𝜆𝜆(𝑇𝑇), 0, 𝜆𝜆𝐼𝐼(𝑇𝑇), 𝜆𝜆𝑟𝑟(𝑇𝑇)], as I(T) and r(T) are 

fixed (constant) but S(T) is variable.  Applying the PMP to the system in Eq. 15 

𝐻𝐻(𝑑𝑑, 𝑥𝑥,𝑜𝑜𝑣𝑣∗ , 𝜆𝜆, 𝜆𝜆1, 𝜆𝜆2) ≥ 𝐻𝐻(𝑑𝑑, 𝑥𝑥,𝑜𝑜𝑣𝑣, 𝜆𝜆, 𝜆𝜆1, 𝜆𝜆2),∀ 𝑎𝑎𝑑𝑑𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑒𝑒 𝑜𝑜𝑣𝑣 

−𝜆𝜆𝑆𝑆𝑜𝑜𝑣𝑣∗𝑑𝑑 + 𝜆𝜆𝑟𝑟𝑜𝑜𝑣𝑣∗𝑑𝑑 ≥  −𝜆𝜆𝑆𝑆𝑜𝑜𝑣𝑣𝑑𝑑 + 𝜆𝜆𝑟𝑟𝑜𝑜𝑣𝑣𝑑𝑑 

𝑜𝑜𝑣𝑣∗𝑑𝑑(𝜆𝜆𝑟𝑟 − 𝜆𝜆𝑆𝑆) ≥ 𝑜𝑜𝑣𝑣𝑑𝑑(𝜆𝜆𝑟𝑟 − 𝜆𝜆𝑆𝑆) 

Eq. 20 

The optimal control then becomes bang-bang control [18] where the switching function is 

given by (𝜆𝜆𝑟𝑟 − 𝜆𝜆𝑆𝑆 = 0) and satisfies  

𝑜𝑜𝑣𝑣∗ = �
𝑜𝑜𝑣𝑣,𝑚𝑚𝑚𝑚𝑥𝑥, 𝜆𝜆𝑟𝑟 > 𝜆𝜆𝑆𝑆
?, 𝜆𝜆𝑟𝑟 = 𝜆𝜆𝑆𝑆

0,        𝜆𝜆𝑟𝑟 < 𝜆𝜆𝑆𝑆    
 

Eq. 21 

Following the development in Ref [18], it can be shown that that the optimal control is purely 

bang-bang, and there is no singular component or discontinuity.  If 𝜆𝜆𝑟𝑟 = 𝜆𝜆𝑆𝑆 on some interval 

B, then 𝜆𝜆�̇�𝑆 = 0 on B. Eq 18 then can be simplified to: 

0 = −(𝜆𝜆𝐼𝐼 − 𝜆𝜆 − 𝜆𝜆𝑆𝑆)𝛽𝛽𝐼𝐼 − (𝜆𝜆𝑟𝑟 − 𝜆𝜆𝑆𝑆)𝑜𝑜𝑣𝑣, ( 𝑜𝑜𝑒𝑒𝑑𝑑 𝑜𝑜𝑣𝑣 = 0) 

𝜆𝜆𝐼𝐼 = 𝜆𝜆 + 𝜆𝜆𝑠𝑠 

Eq. 22 

We can further postulate that 𝜆𝜆�̇�𝐼 = 0 on B. Hence, by Eq 18 and Eq 22, it must follow that 

𝜆𝜆𝐼𝐼 = 0. Therefore, 𝜆𝜆𝑆𝑆 = −𝜆𝜆 and then the only nonzero criteria for the variables on B is 

(𝜆𝜆, 𝜆𝜆𝑆𝑆, 𝜆𝜆𝐼𝐼 , 𝜆𝜆𝑟𝑟) = (1,−1,0,−1). Furthermore, by Eq 18 and 19, once 𝑜𝑜𝑣𝑣∗  becomes singular, it 

must remain singular throughout the whole interval B. Since, 𝑇𝑇 ∈ 𝐵𝐵, (𝜆𝜆, 𝜆𝜆𝑆𝑆, 𝜆𝜆𝐼𝐼 , 𝜆𝜆𝑟𝑟) =

(1,−1,0,−1) has to satisfy the transversality condition that 𝜆𝜆𝑆𝑆(𝑇𝑇) = 0  shown in Eq. 18. We 
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can further postulate that, since the boundary condition posed by the transversality condition 

is not met, the optimal control is purely bang-bang control. Now we examine the time at 

which the optimal control switches from 0 to 𝑜𝑜𝑣𝑣,𝑚𝑚𝑚𝑚𝑥𝑥. Let the switch time be at 𝑑𝑑𝑠𝑠 [18]. Then 

the Hamiltonian, H, at switching time, 𝑑𝑑𝑠𝑠 can be written as follows: 

𝐻𝐻(𝑑𝑑𝑠𝑠) = −𝜆𝜆�̇�𝐼(𝑑𝑑𝑠𝑠)𝐼𝐼(𝑑𝑑𝑠𝑠) = −𝜆𝜆�̇�𝑆(𝑑𝑑𝑆𝑆)𝑑𝑑(𝑑𝑑𝑠𝑠) − 𝜆𝜆𝐼𝐼(𝑑𝑑𝑠𝑠)𝛾𝛾𝐼𝐼(𝑑𝑑𝑠𝑠) = 0 Eq. 23 

By substituting 𝜆𝜆�̇�𝐼(𝑑𝑑𝑠𝑠) = 0 into Eq. 18 gives 

(𝜆𝜆𝑆𝑆(𝑑𝑑𝑠𝑠) + 𝜆𝜆)𝛽𝛽𝑑𝑑(𝑑𝑑𝑠𝑠) = 𝜆𝜆𝐼𝐼(𝑑𝑑𝑠𝑠)(𝛽𝛽𝑑𝑑(𝑑𝑑𝑠𝑠) − 𝛾𝛾) Eq. 24 

 Considering the relations in Eqs. 21 and 23, the pure bang-bang optimal control is defined: 

𝜆𝜆𝐼𝐼(𝑑𝑑𝑠𝑠) > 0 𝑤𝑤ℎ𝑒𝑒𝑎𝑎 𝜆𝜆�̇�𝑆(𝑑𝑑𝑠𝑠) < 0 → �0 → 𝑜𝑜𝑣𝑣,𝑚𝑚𝑚𝑚𝑥𝑥� 

𝜆𝜆𝐼𝐼(𝑑𝑑𝑠𝑠) < 0 𝑤𝑤ℎ𝑒𝑒𝑎𝑎 𝜆𝜆�̇�𝑆(𝑑𝑑𝑠𝑠) > 0 → �𝑜𝑜𝑣𝑣,𝑚𝑚𝑚𝑚𝑥𝑥 → 0� 

𝜆𝜆𝐼𝐼(𝑑𝑑𝑠𝑠) = 0 𝑤𝑤ℎ𝑒𝑒𝑎𝑎 𝜆𝜆�̇�𝑆(𝑑𝑑𝑠𝑠) = 0 → (𝑎𝑎𝑜𝑜 𝑠𝑠𝑤𝑤𝑠𝑠𝑑𝑑𝑒𝑒ℎ 𝑜𝑜𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒𝑠𝑠) 

Eq. 25 

Since 𝜆𝜆𝑆𝑆(𝑑𝑑𝑠𝑠) = 𝜆𝜆𝑟𝑟 = 𝑒𝑒𝑜𝑜𝑎𝑎𝑠𝑠𝑑𝑑. , 𝜆𝜆𝑆𝑆(𝑑𝑑𝑠𝑠) + 𝜆𝜆 is either always positive, always negative or always 

zero. Suppose 𝜆𝜆𝑆𝑆(𝑑𝑑𝑠𝑠) + 𝜆𝜆 = 0. Then, by Eq. 24, either 𝜆𝜆𝐼𝐼(𝑑𝑑𝑠𝑠) = 0 𝑜𝑜𝑒𝑒 𝑑𝑑(𝑑𝑑𝑠𝑠) = 𝛾𝛾
𝛽𝛽

. According to 

Eq.25, if 𝜆𝜆𝐼𝐼(𝑑𝑑𝑠𝑠) = 0, then no switching occurs.  

Therefore, if 𝑑𝑑(𝑑𝑑𝑠𝑠) = 𝛾𝛾
𝛽𝛽

 then the optimal control has only one switch and this switching 

occurs when I(t) is maximum, since S(t) is a monotonically decreasing function of time [18]. 

So, the possible control switches are: 

𝑜𝑜𝑣𝑣∗ = �
𝑜𝑜𝑣𝑣,𝑚𝑚𝑚𝑚𝑥𝑥, 𝑑𝑑 ∈ [0, 𝑑𝑑𝑠𝑠)
0,        𝑑𝑑 ∈ [𝑑𝑑𝑠𝑠,𝑇𝑇]     

Eq. 26 

We consider 𝜆𝜆𝑆𝑆(𝑑𝑑𝑠𝑠) + 𝜆𝜆 > 0. By using the relations derived in Eq 24 and Eq 25 it follows 

that: 



 

Multiscale Model for Hurricane Evacuation and Fuel Shortage                                                          21 

 

(𝑠𝑠) 𝜆𝜆𝐼𝐼(𝑑𝑑𝑠𝑠) > 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝑑𝑑(𝑑𝑑𝑠𝑠) >
𝛾𝛾
𝛽𝛽

  𝑜𝑜𝑒𝑒 

(𝑠𝑠𝑠𝑠) 𝜆𝜆𝐼𝐼(𝑑𝑑𝑠𝑠) < 0 𝑎𝑎𝑎𝑎𝑑𝑑 𝑑𝑑(𝑑𝑑𝑠𝑠) <
𝛾𝛾
𝛽𝛽

   

Eq. 27 

Thus, by tracking the value of S(t) we can develop an algorithm to switch the control and 

determine the switching time analytically. In this SIR model for fuel shortage, the switching 

time, ts, refers to the time when one should supply extra fuel to the operating fuel stations 

(susceptible at time t), to keep them operational in order to optimally control the fuel 

shortage epidemic to favorable levels. 

The term uv is the vaccination control for the SIR dynamic system. In our model we 

treat uv as the percentage of operational fuel stations, S(t), that is being replenished to avoid 

additional fuel stations to go out of fuel. This is different from the recovery rate (γ) which is 

the rate at which non-operational fuel stations, I(t), are being replenished to become 

operational again. The optimal refueling rate per capita, uv, is targeted at the susceptible 

compartment (S(t)) of the dynamic system. This has no effect on the recovery rate, γ.  

The control is applied at uv,max from  t=0 to a switching time, ts to optimally reduce 

I(t), such that the basic reproduction number (R0) corresponding to the fuel shortage is less 

than 1, thereby mitigating the epidemic. The model suggests a combination of uv,max and ts to 

achieve this objective. This approach helps to introduce optimal refueling control earlier in 

the evacuation period before the hurricane landfall and can determine the extra amount of 

reserve fuel required and the time period in which refueling is most effective.    
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RESULTS AND DISCUSSION 

Parameter Estimation 

The empirical data from the Gasbuddy crowdsourced platform are utilized to parameterize 

the models discussed above. The Unscented Kalman Filter is used to estimate the state 

variables and epidemic parameters (β, γ, R0) based on these data. FIG 2 (a) shows the fuel 

shortage data for the 2017 Hurricane Irma and FIG 2(b) shows the similar data for the 2018 

Hurricane Florence, which affected North Carolina. The plots indicate fuel shortages of up to 

66% in South Florida during Hurricane Irma and similar shortages close to 70% in 

Wilmington, North Carolina during Hurricane Florence.  

 

Figure 1.2(a) The Fuel shortage data from 2017 Hurricane Irma, (b) Similar data for 

2018 Hurricane Florence. 

FIG 3(a) shows the variation of transmission rate per capita (β) and the recovery rate (γ) 

estimated using UKF for the Fort Myers-Naples metropolitan area where Hurricane Irma had 

a landfall on continental United States. Similar data for Wilmington affected by Hurricane 

Florence is shown in FIG 4 (a). While the fuel shortage data generally tend to peak ahead of 
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the landfall in preparation for evacuation, the fluctuations in fuel demand observed in FIG 2 

cause the variations in the parameter estimations for β and γ.  Consider the variation of the β 

parameter; in both FIGs 3(a) and 4 (a) an initial peak is followed by a stabilization indicating 

the high demand for fuel as the evacuation is starting. Compared to the Fort Myers-Naples, 

Wilmington displayed higher values of β which is indicative of the fact that fuel shortages 

occurred at a faster rate in Wilmington during Hurricane Florence than in Fort Myers-Naples 

during Hurricane Irma. The γ rate shows a gradual increase after the hurricane is passed, 

indicating the progress of the recovery. 

We require a constant parameter SIR dynamical system described by equations 1 and 2, for 

the implementation of the optimal control refueling strategy. For this purpose, the 

mechanistic data produced using all combinations of the β and γ values, estimated by the 

UKF were compared with the empirical data to evaluate the mean square error. The best fit β 

and γ values are marked in FIG 3(a) and 4(a) for the two cases. FIG 3(b) shows the empirical 

fuel shortage data and the estimated continuous data with the constant β and γ values for 

Naples-Fort Myers. A similar plot for Wilmington during Hurricane Florence is shown in 

FIG 4(b). In both cases, we can observe that the estimated data for the continuous time 

invariant SIR model show close resemblance to the empirical fuel shortage data.   

The continuous time invariant model SIR data for the remaining cities affected by Hurricanes 

Irma and Florence were computed in a similar way. The best fit values of β, γ and the basic 

reproduction number (R0) for all of the cities are tabulated in Table 2. The UKF estimation 

of β and γ values were unique to each city. While the values of β vary depending on the 

impact of Hurricane evacuation in the different cities, the evolution of β follows a similar 
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trend for all cities as shown in FIG 5. The similarity of γ values for different cities is 

indicative of the similarity in the recovery period for the different cities affected by 

Hurricane Irma. In the case of Hurricane Florence the slow moving nature of the storm and 

the difference in the infrastructure, in the affected communities resulted in the variation in 

the recovery periods.  

The Unscented Kalman Filter used here is effective in reducing the linearization error when 

finding the parameters that generate data from Eqs 4 and 5 while representing the empirical 

data. In addition, this approach is effective in estimating the dynamic parameters with limited 

data during early stages of an ongoing hurricane evacuation. Such on-the-fly analysis can 

help decision makers allocate limited resources during an ongoing disaster.      
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Figure 1.3(a). β and γ rates estimated from Gasbuddy data for each time step (dt) for 

Fort Myers-Naples during Hurricane Irma. The red circle represents the β and γ values 

used to plot IUKF in 3(b). (b)  Continuous time Invariant data of % empty fuel stations 

(I(t)). Computed data from the best fit β and γ constant parameters, and the empirical 

data is shown for Fort Myers-Naples during Hurricane Irma. 
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Figure 1.4(a). β and γ rates estimated from Gasbuddy data for each time step (dt)  for 

Wilmington during Hurricane Florence. The red circle represents the β and γ values 
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used to plot IUKF in 4(b). (b)  Continuous time Invariant data of % empty fuel stations 

(I(t)). Computed data from the best fit β and γ constant parameters, and the empirical 

data is shown for Wilmington during Hurricane Irma 

Table 1.2. β, γ and R0 parameters and the number of fuel stations for the major cities 

affected by Hurricanes Irma and Florence. 

Event City/Area Γ β R0 
No. Of Fuel 

Stations 

Irma 

Miami-Fort Lauderdale 0.1841 0.0111 3.98 1369 

Fort Myers-Naples 0.1901 0.0089 2.90 76 

Tampa-St Petersburg 0.1708 0.01 3.40 922 

Orlando 0.2214 0.006 1.57 810 

Jacksonville 0.2718 0.0097 1.61 453 

Florence 

Wilmington 0.0953 0.012 11.59 46 

Greenville-New Bern-

Washington 0.1543 0.0143 8.91 
130 
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Figure  1.5. Transmission per capita rate (β) for the city/areas effected by hurricane 

Irma. 

Optimal Refueling Strategy  

We now present the results of the optimal refueling control algorithm for the SIR 

deterministic model formulated in the methods section. We utilize the constant values of 

transmission rate per capita (β) and the recovery rate (γ) estimated from the procedure 

outlined in the previous section.  The continuous time invariant SIR data from these 

parameters closely resemble the empirical data and can be utilized directly in the optimal 

control algorithm. The results for the optimal refueling strategy are in the form of per capita 

rate of refueling (uv,max) and the corresponding switching time (ts), which control the fuel 

shortage epidemic, i.e. lower the basic reproduction number (R0), to non-epidemic levels as 

presented in Eq. 27. The per capita rate of refueling (uv,max) corresponds to the fraction of 

susceptible fuel stations, S(t), that will be provided with extra refueling scheme at a given 

time.  We vary this refueling rate (uv,max)  from 0 (no intervention) to 0.75 (75% refueling 

stations prevented from emptying), and determine the corresponding switching time (ts) for 

the intervention to effectively reduce the fuel shortage below epidemic levels. When viewed 
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in totality, this analysis would provide a strategy to allocate limited resources to different 

affected regions from a hurricane. 

FIG 6 (a), (b), (c) show the application of the refueling strategy to the Fort Myers-

Naples region during Hurricane Irma. FIG 6(a) shows the percentage fuel stations that remain 

operational at any given time. The baseline is the curve corresponding to uv=0 and is same as 

that in FIG 3(b). The baseline data generated using the UKF estimation process is the 

continuous time invariant representation of the empirical data and can be characterized by 

Eqs. 1 and 2. The remaining plots in 6(a) correspond to different refueling interventions. In 

these instances, the per capita rate of refueling (uv,max), represents the fraction of gas stations 

that are prevented from becoming empty through external intervention till the switching time. 

The level of external intervention in terms of amount of fuel required changes every time 

step as the number of operational fuel stations (S(t)) changes. The application of this control 

strategy helps reduce the number of empty fuel stations, I(t), as shown in FIG 6 (b). FIG 6 (c) 

shows the application time and the switching time for the intervention. Here the per capita 

rate of refueling (uv,max) is applied from the beginning of the observed time window and then 

switched to zero at the time designated by the condition in Eq 27. Note that application 

period for the refueling is well in advance of the hurricane landfall (Day 4 in this case). FIG 

6 (b) and (c) show that the per capita refueling rate of 0.1 for 2.2 days reduces the peak fuel 

shortage from 55% to 48% and also moves the occurrence of peak shortage back by a day. 

When the uv,max=0.75 is applied, the application period required is 0.5 days and it reduces the 

peak shortage to 37%. FIGs 7(a), (b) and (c) show similar data for Wilmington affected by 

Hurricane Florence. Similar trends for the effect of refueling strategy in reducing the 
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susceptible gas stations and in pulling back the peak fuel shortage time can be observed here 

as well.  FIG 8 shows the evolution of infected or empty gas stations for other cities affected 

by Hurricane Irma, Miami-Ft Lauderdale, Tampa-St Petersburg, Orlando and Jacksonville. 

The β and γ values used to generate the baseline continuous time invariant SIR data 

corresponding to uv=0 are shown in Table 2. The reduction in fuel shortages with different 

levels of intervention uv,max follows the same trend as that discussed earlier.  

While increasing the refueling intervention levels reduces the number of empty 

refueling stations, there is a diminishing return when the intervention is increased beyond a 

certain level. FIG 9 (a) shows the variation in the peak value of empty fuel stations (I(t)) as 

the refueling rate (uv,max) is increased from 0 to 1. The change of maximum I(t) is observed to 

be more in areas with higher rate of fuel shortage, i.e. high transmission rate per capita (β). 

For the Fort Myers-Naples area, with β=0.0089/day there is a gradual reduction in maximum 

I(t) as uv,max is increased. In the case of Wilmington, with β=0.012/day, there is a steeper 

change in maximum I(t) at low uv,max. In all the cases, there is a steady decrease in I(t) with 

the increase in the refueling rate; however, the rate of decrease is clearly higher for lower 

values of uv,max. When this behavior is plotted as a bilinear relation as sown in FIG 9(b), the 

inflection point corresponds to the most effective refueling rate when there is a resource 

constraint. 

An ongoing evacuation during a hurricane can be an evolving and dynamic problem. 

Residents in affected areas decide on the evacuation and preparation based on various factors 

like hurricane intensity, hurricane path and personal resources [40]. The ensuing fuel 

shortages can vary by location based on these factors. The approach presented here can help 
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decision makers with resource allocation during an ongoing emergency. In an ongoing 

evacuation scenario, the UKF parameter estimation can be used to estimate the β parameter 

for the affected regions even with limited data during the beginning of the fuel shortage. The 

γ parameter is related to recovery rate and can be estimated using the β estimate and an 

approximate recovery period based on historical data. This analysis for all the affected 

regions combined with the optimal refueling methodology discussed above can help assess 

the levels of fuel supply required to mitigate the fuel shortage crisis in the affected regions, 

and thereby assist decision makers in allocating limited resources in a dynamically evolving 

emergency.       
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Figure 1.6 (a) Evolution of susceptible (operational) gas stations and the effect of 

refueling for Fort-Myers-Naples during Hurricane Irma. (b) Corresponding evolution 

of Infected or empty fuel stations. (c) The optimal application and switching time, ts, for 

different refueling rates. 
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Figure 1.7 (a) Evolution of susceptible (operational) gas stations and the effect of 

refueling for Wilmington during Hurricane Florence. (b) Corresponding evolution of 

Infected or empty fuel stations. (c) The optimal application and switching time, ts, for 

different refueling rates. 
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Figure 1.8. The evolution of empty gas stations and the effect of optimal refueling 

strategy on other cities affected by Hurricane Irma (a) Miami-Ft Lauderdale, (b) 

Tampa St Petersburg, (c) Orlando and (d) Jacksonville. 
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Figure 1.9 (a). Maximum number of empty fuel stations, I(t), for uv,max ranging from 0 

to 1. (b). Bilinear Interpolation of Wilmington and Ft Myers-Naples to determine the 

optimal uv,max. during Hurricanes Florence and  Irma. 
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CONCLUSIONS 

Fuel is a critical and limited resource during a natural disaster. Regional evacuations from 

major hurricanes can generate significant and often overwhelming fuel demand. In this study, 

for the first time we utilize a combination of social media crowdsourced data and 

epidemiological modeling techniques to address the problem of fuel shortages during 

hurricanes. We used the crowdsourced data from Gasbuddy to model the fuel shortage 

experienced during recent hurricanes as a contagion. The Unscented Kalman Filter was 

utilized to evaluate the dynamic parameters, transmission rate per capita (β) and recovery rate 

(γ), for multiple cities affected by Hurricanes Irma and Florence. An optimal refueling 

strategy was developed using Bang-Bang Control theory. The optimal control strategy 

provides useful insight into the control of a fuel shortage contagion using a vaccination 

analogue to the SIR model. The methodology can estimate the amount of fuel required at any 

given time to mitigate the epidemic fuel shortage in a given geographical region.  This 

approach can be used to analyze fuel shortages during an ongoing evacuation and assist in 

resource allocation decisions. 
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CHAPTER 2. PREDICTIVE MODELING OF FUEL SHORTAGES DURING 

HURRICANE EVACUATION 

(This chapter is a journal paper in review) 

INTRODUCTION 

Mass evacuations, particularly those at a state-wide level, place a significant burden on fuel 

supplies. The sudden and drastic increase in travel demand, compounded by disruptions to 

the supply chain and fuel hoarding from non-evacuees has been shown to cause localized fuel 

shortages during these large, single-event traffic movements [41]. Hurricane evacuees also 

tend to make longer, intercity trips to stay with friends and family, further increasing fuel 

demand [6]. During evacuations, fuel shortages can result in stranded cars and exacerbate 

traffic problems in an emergency [42]. During the 2017 Hurricane Irma evacuation, localized 

fuel shortages lasted several days and led to a cascade of problems. For example, the fuel 

shortages gave rise to unpredictable increases in fuel prices, placing additional barriers for 

evacuees living on low wage incomes. Fuel shortages also led to increased highway 

congestion near freeway off-ramps and service areas and resulted in evacuees detouring from 

designated routes, where less traffic was expected or planned for [3]. Even after the hurricane 

passed, fuel shortages continued to impede the recovery efforts, as utility crews struggled to 

fuel needed equipment necessary to restore power supply [3]. Understanding the 

characteristics of fuel shortages during a hurricane evacuation is crucial to the mitigation of 

these problems and reducing the casualties caused by an imminent hurricane.  

While news reports have documented fuel shortages during past hurricanes, crowd-

sourced data from the social media platform Gasbuddy [8] has quantified the shortages 
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during recent hurricanes, including Hurricane Irma. The analysis of crowdsourced data 

performed in this paper suggest characteristics of an epidemic for the evolution of fuel 

shortages. For example, as one gas station runs out of gas, drivers look to other stations in the 

vicinity to refuel. This places additional demand on neighboring gas stations, increasing the 

likelihood these stations will run out of fuel also. In this fashion, a fuel shortage at one 

location has “spread” to another. The goal of this paper is to develop a predictive model for 

estimating fuel shortages based on the Susceptible- Infected –Recovered (SIR) epidemic 

model using data collected from the 2017 Hurricane Irma evacuation. To limit the spread of 

fuel shortages, this paper identifies an effective “vaccination” strategy based on optimal 

control theory. To demonstrate the applicability of the proposed approach, the model is 

applied to a hypothetical storm making landfall in South Florida. The results of the analysis 

suggest that using the optimal control theory strategy to prioritize the refueling of gas 

stations, could lead to a 50 percent reduction in the number of depleted gas stations. 

Literature Review and Background 

Sociologists and computational scientists have long studied the spread of social phenomenon 

using epidemiological models with different contact and network parameters. Analyzing the 

connected social and behavioral events of a population as contagion leads to the study of 

these phenomena from a different perspective. For instance, contagious disease modelling 

has also been used to study social phenomena like, contagious adoption of health related 

behaviors [43], information spreading [44] and the spread of obesity through social ties [45]. 

Social contagion has also been characterized as a rumour spreading in social media [46] and 

spread of influential and public opinions in a population [47]. Several similar studies [48-50] 
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in various fields indicate the effectiveness of epidemiological models originally developed 

for disease studies in examining and predicting socially contagious phenomenon.  

The 2017 evacuation from Hurricane Irma has been referred to as the largest 

evacuation in the history of the nation [51]. Approximately 6.5 million Floridians were 

placed under either mandatory or voluntary evacuation orders [3]. The overwhelming 

response to Hurricane Irma was driven by several factors that were unique to the storm: (1) 

Hurricane Irma had already devastated a number of Caribbean islands, including the U.S. 

Virgin Islands and Puerto Rico, resulting in several known deaths at the time [52].    (2) 

Hurricane Irma was the fifth strongest hurricane ever recorded in the Atlantic Ocean. (3) The 

storm path and “cone-of-uncertainty” threatened nearly the entire state of Florida. (4) 

Fluctuations in the storm’s path indicated possible devastating storm surge to nearly all of 

Florida’s coastal areas, where the majority of residents live. The overwhelming response to 

evacuation orders led to fuel shortages documented by Florida Department of Transportation 

[3]. FDOT provided five recommendations for limiting the impact of fuel shortages for future 

mass evacuation events: 

(1) Provide law enforcement escorts for refueling vehicles 

(2) Communicate the fuel availability during the event  

(3) Provide regional waivers for the transportation of fuel across state lines 

(4) Identify critical gas stations along state evacuation routes 

(5) Provide traffic management plans for critical stations 
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Prior research into evacuation traffic as focused primarily on evacuation decision-

making [40, 53-55] or estimating traffic volumes and congestion levels [56-60]. Wolshon 

[57] used ground-based detectors to report traffic volumes in Louisiana to estimate the 

vehicle response to Hurricane Katrina. Li et al. [58] used traffic count information collected 

from tollbooths to investigate evacuation response curves for Hurricane Irene from a single 

county in New Jersey. The research effort was later expanded to include historical travel time 

data and weigh-in-motion stations [59]. Spatial patterns were also investigated for Hurricane 

Sandy, although volumes were lower than for Hurricane Irene [60]. Prior attempts to model 

and predict the fuel shortages during an evacuation have used social media post to identified 

regions experiencing fuel shortages. The research then predicted where shortages were likely 

to occur [7]. In earlier work, Islam and co-workers (Islam, Namilae, Prazenica, & Liu, 2020) 

utilized Gasbuddy data to parametrize an SIR model using Unscented Kalman Filter (UKF). 

In this paper, that model is extended to correlate with traffic and survey data to predict the 

fuel shortages and suggest optimal control based remedial intervention strategies.     

METHODOLOGY 

The research methods seeks to pioneer a fuel shortage prediction model for 

application during evacuations by leveraging existing techniques found in epidemiological 

modeling. Broadly, this chapter describes the data sources, epidemic model development for 

fuel shortages, and the predictive analysis for evacuation traffic. The following sections 

detail these processes. 
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Data Sources 

The Florida Department of Transportation’s (FDOTs) Transportation Data and 

Analytics Office gathers roadway data from across the State of Florida. Real-time traffic 

information is provided during emergency such as hurricanes and wildfires. Traffic 

information, namely volume, speed, and vehicle classification, is collected hourly from 

telemetric monitoring stations located throughout the state. There are 255 data collection 

sites on Florida roadways at the time of this study, each providing bidirectional hourly counts 

and speeds. For the analysis of the Hurricane Irma evacuation, data were collected, 

cataloged, and processed for a 36-day period beginning August 27, 2017 and ending October 

1, 2017.  

The data pertaining to percentage of fuel stations out of gas, for this study, were 

acquired from Gasbuddy. Gasbuddy is an online database containing vital roadside 

information on more than 150,000 fuel stations. The website also provides real-time fuel 

price information to drivers through a designated mobile app created for both iOS and 

Android platforms [8]. Along with that, the website also enables existing drivers to report 

and review various refueling establishments throughout the United States. Gasbuddy played a 

crucial role during Hurricanes Irma and subsequent hurricanes by informing evacuees with 

real time information on fuel availability in different affected areas as they were evacuating. 

The crowd-sourced mobile app enabled drivers to report on fuel stations that were out of fuel 

in affected areas, thus contributing to driver awareness about fuel availability during the 

evacuation [19].  
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Epidemic Model for Fuel Shortages 

A Susceptible Infected-Recovered (SIR) dynamic epidemic model [16] is utilized to 

model the fuel shortages with vaccination analogue used to represent the intervention efforts 

to address the fuel shortage. In a conventional disease epidemic, individuals are divided into 

the three compartments corresponding to susceptible, infected and recovered based on their 

infection status, and the dynamic parameters that describe this evolution are assessed by 

comparisons with empirical data.   

A similar approach is used for refueling stations, wherein the percentage of refueling 

stations without gasoline is considered to be “infected (I)”, percentage of refueling stations 

with gasoline that are prone to running out of gasoline is “susceptible (S)” and percentage 

filled with gasoline after running out of fuel as “recovered (R)”. The recovered refueling 

stations do not get re-infected (experience fuel shortage) in this case as the model and the on-

ground situation represents a short-term outbreak. 

In terms of differential equations, the dynamic model for the SIR is: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝛽𝛽𝑑𝑑(𝑑𝑑)𝐼𝐼(𝑑𝑑) − 𝑜𝑜𝑣𝑣𝑑𝑑(𝑑𝑑) 
(1) 

 

𝑑𝑑𝐼𝐼
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝑑𝑑(𝑑𝑑)𝐼𝐼(𝑑𝑑) − 𝛾𝛾𝐼𝐼(𝑑𝑑) 
(2) 

 

The parameters β and γ represent the transmission rate per capita and recovery rate, 

which in the current context represent the rate at which the susceptible refueling stations are 

emptying and the empty gas stations are resupplied respectively. As in a conventional SIR 

model the mean infectious period, i.e. period in which most fuel stations are without fuel, 
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is1/𝛾𝛾.The quantity 𝛽𝛽𝑑𝑑(0)/𝛾𝛾 is a threshold quantity known as a basic reproduction number 

(𝑑𝑑0). This is defined as the percentage of refueling stations without fuel in a region, because 

of 1 percent of stations going out of fuel. The 𝑑𝑑0 value determines whether there is an 

epidemic taking place or not. If 𝑑𝑑0 < 1, the epidemic dies out, while 𝑑𝑑0 > 1 results in an 

epidemic [16, 18]. The term uv is the per capita rate of refueling. Keeping congruency with 

our model parameters, uv is the rate at which susceptible gas stations are prevented from 

being emptied out every day by external intervention that provides extra amounts of gas 

supply. This external intervention, in the form of additional fuel supply, can be provided by a 

governing agency or a private company. The level of uv that can be attained at any given time 

depends on the infrastructure and planning that is in place to address the problem. For 

example, the gasoline reserves in proximity, the availability of transport vehicles and 

personnel etc.  In extreme demand situations arising from large scale evacuations, the control 

resources can be considered to be limited. An optimal strategy to refuel is developed such 

that fuel shortage is kept at a favourable level throughout the interval being observed, subject 

to the limited fuel resources. 

The refueling problem considered in this paper can be formulated as the following 

general optimal control problem: 

Determine the optimal control ( )u t∗ , 0t t T≤ < , where T  is the unknown final time 

that minimizes the cost function 

( )
0

,
T

t

J L x u dt= ∫       (3) 

subject to the constraints: 
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( ) ( ) 00, ;    x f x u x t x= =            (4) 

( ) 0g u ≤               (5) 

Eq. (4) states that the state vector nx R∈  is dependent on the control input mu R∈  based on the 

system dynamics model, while Eq. (5) represents an inequality constraint on the control input.  

The classical approach is to append the dynamical system constraint (4) to the cost function as 

follows: 

( ) ( )( ){ } ( ){ }
0 0

, , , ,
T T

T T

t t

J L x u f x u x dt H x u x dtλ λ λ′ = + − = −∫ ∫     (6) 

where J ′  represents the augmented cost function, nRλ∈  is a vector of Lagrange multipliers, 

also known as the co-state vector, and the Hamiltonian H is defined as 

( ) ( ) ( ), , , ,TH x u L x u f x uλ λ= +     (7) 

The classical solution to this optimal control problem for an unconstrained control input 

is given by the Euler-Lagrange equations [17]: 

H
x

λ ∂
= −

∂
    (Co-State Equation)    (8) 

( ),Hx f x u
λ

∂
= =
∂

    (State Equation)    (9) 

0H
u

∂
=

∂
   (Stationarity Condition)    (10) 

( ) ( ) ( ) 0T T dx T H T dTλ + =     (Transversality Condition) (11) 

For constrained inputs, the stationarity condition (Eq. 5) is generalized using Pontryagin’s 

Minimum Principle, which states that the optimal control input corresponds to the control that 

minimizes the Hamiltonian when the state and co-state are fixed at their optimal values [61]: 
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( ) ( ), , , ,       H x u H x u u Uλ λ∗ ∗ ∗ ∗∗ ≤ ∀ ∈     (12) 

where U represents the set of all admissible control inputs. 

For the optimal refueling problem considered in this paper, the input constraint 

corresponds to the following resource constraint: 

( ) ( )
0

max

T

v
t

R u t S t dt r= ≤∫           (13) 

A third state variable r  is defined with the dynamics 

   vr u S=             (14) 

The state vector is then defined as [ ]Tx S I r= , the control input is vu , and the co-state 

vector is defined as [ ]TS I rλ λ λ λ= .  The cost function to be minimized takes the form: 

( ) ( ) ( )
0 0

,
T T

t t

J L x u dt S t I t dtβ= =∫ ∫     (15) 

The final time is defined as the time when the number of infected states reaches a selected 

threshold, ( ) minI T I= , which would represent the end of the epidemic.  The full system 

dynamics model ( ),x f x u=  is given by 

v

v

S SI u S
I SI I
r u S

β
β γ

  − − 
   = −   
     







     (16) 

This corresponds to a nonlinear, time-invariant system.  The control is constrained as follows: 

,max0 v vu u≤ ≤                (17) 

The Hamiltonian takes the form: 

( ) ( ) ( ), , S v I r vH x u SI SI u S SI I u Sλ β λ β λ β γ λ= − + + − +   (18) 
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The Euler-Lagrange equations (Eq. 8) for the co-states are then given by 

( ) ( )
( )

1
1

0

S S I S r v

I S I I

r

I u
S

λ λ λ β λ λ
λ λ λ β λ γ
λ

   − + − + − 
   = − + − +   
     







       (19) 

The optimal control input ,vu ∗  is determined using Pontryagin’s Minimum Principle: 

( ) ( ), , , , , ,max      0v r S v r S v vu u u uλ λ λ λ∗ ∗ ∗ ∗ ∗− ≤ − ∀ ≤ ≤    (20) 

This is equivalent to requiring that the optimal control minimize the left-hand side of the 

inequality.  As a result, the optimal control policy corresponds to a bang-bang control law in 

which the control takes on either its maximum or minimum constrained value based on the 

sign of , ,r Sλ λ∗ ∗− , which is known as the switching function: 

, ,

, , ,

,max , ,

0
?         

r S

v r S

v r S

u
u

λ λ
λ λ
λ λ

∗ ∗

∗ ∗ ∗

∗ ∗

 >
= =
 <

     (21) 

Note that the optimal control is undefined when , ,r Sλ λ∗ ∗= ; however, it can be shown, following 

a similar argument as presented in [18], that this condition does not occur for a finite period of 

time.  Therefore, the optimal control policy is well-defined at all times and is purely bang-bang 

in nature. 

In order to determine the optimal policy resulting from Eq. (21), it is necessary to 

compute the switching time(s) in the control law.   First, since ( )I T and ( )r T  are fixed, only 

( )S T  is free.  As a result, the transversality boundary condition in Eq. (9) reduces to: 

 ( ) ( ) ( ) 0S T dS T H T dTλ + =      (22) 
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There is no direct relationship between ( )S T  and T ; therefore Eq. (20) results in ( ) 0S Tλ =  

and ( ) 0H T = .  Since the cost function and dynamics model are time-invariant, the 

Hamiltonian is also time-invariant.  Therefore, ( ) [ ]00   ,H t t t T= ∀ ∈ .   

Yang et al. [17] present a detailed proof, in the context of a parallel vaccination problem 

that first demonstrates that there is only a single switching time in the solution.  Then, it is 

shown that starting with zero control and then switching to the maximum vaccination rate does 

not correspond to an optimal policy.  As a result, the optimal solution corresponds to a policy 

in which the maximum vaccination rate should be applied from time 0t  until a single switching 

time st  when the rate is reduced to zero.  Applying this result to the refueling problem results 

in the following optimal refueling policy: 

[ )0
,

,max ,

,0
        s

v
v s

t t t
u

u t t T∗

∈
=   ∈  

                                                   (23) 

This corresponds to a policy in which fuel is supplied, starting at 0t , at the maximum rate until 

the switching time st , which is defined as the time when the number of susceptible gas stations 

is given by ( )sS t γ
β

= .  The final time T  corresponds to the time at which the number of gas 

stations with fuel shortages (i.e., the number of infected states) is given by ( ) minI T I= . 

The crowd sourced data from Gasbuddy platform for Hurricane Irma is used to 

parametrize the model.  While there are several possible ways to estimate the parameters β 

and γ, an Unscented Kalman Filter (UKF) is utilized for this purpose in this paper. The 

Kalman Filter [24], developed in the early 1960’s, is an effective method for estimating the 

parameters from empirical data with a measurement correction. The classical Kalman filter is 
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effective in providing the optimal state and parameter estimation for linear systems subject to 

a Gaussian noise. However, the model equations for the SIR problem (Eqs 1 and 2) are 

inherently nonlinear. The Unscented Kalman Filter characterizes the estimation error by 

propagating a set of sigma points through the nonlinear dynamics model; therefore, it is not 

limited by the assumption of Gaussian white noise [34]. It has been used for various 

applications in engineering and epidemiology [30, 31]. The detailed description of the 

parameter estimation using UKF for the SIR model is provided by Islam et al [62].  

Predictive Analysis of Evacuation Traffic and Fuel Shortage 

 The above optimal control algorithm and the epidemic model are used for examining 

fuel shortage and for determining the optimal intervention control parameters. This model is 

parametrized with a prediction of fuel shortage data for a potential hurricane impacting south 

Florida. The step-by-step methodology for the model application is as follows: 

(1) Analyze the cumulative traffic trends for evacuation during past hurricanes using 

transportation data. FDOT data from the Sunguide program for Hurricane Irma is 

used for this analysis.  

(2) Analyze the fuel shortage trends for past hurricanes using the crowdsource data from 

the Gasbuddy app. The data form 2017 Hurricane Irma is used for this analysis 

(3) Obtain the correlation between traffic and fuel shortage. For Hurricane Irma a near 

linear behaviour is observed. Note that the parameterization for steps 1-3 can improve 

significantly as data from historical and future hurricanes is used to develop the 

relation between evacuation and fuel shortage. 
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(4) The total evacuation traffic volume due to a hurricane impacting south Florida is 

estimated based on emergency response surveys as explained below. The evacuation 

traffic distribution in Step 1 is utilized to assess how this traffic is loaded over the 

evacuation period.  

(5) The relation between traffic and fuel shortages from step 3 and the traffic estimate 

from step 4 are used to predict the fuel shortage distribution over the evacuation 

period. The optimal control methodology described in the above section is then 

applied to obtain the optimal refueling plan to mitigate the expected fuel shortage.  

(6) A predictive model is then proposed where the UKF can be utilized to evaluate the 

SIR dynamic parameters from incoming fuel shortage during the initial stages of the 

hurricane. Due to the nature of the Ordinary Differential Equations (ODE) of SIR 

dynamics, only one of the parameters, infection rate (β) can be accurately estimated 

from the data collection of initial stages of the evacuation.  

(7) The Basic Reproduction number (R0) value is then varied to produces predictive 

trends and the optimal refueling strategy is applied to these probable fuel shortage 

trends to demonstrate possible countermeasures. 

The total evacuation traffic volume is predicted based on the state wide surveys 

conducted as a part of emergency planning. In response to the active hurricane seasons of 

2004 and 2005, the Florida State legislature authorized the development of regional 

evacuation studies from across the state. Contracting with Florida’s Regional Planning 

Councils, the Statewide Regional Evacuation Study Program (SRESP) was developed to 

support and update local government emergency management plans [54]. As part of the 
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SRESP, a series of surveys was conducted to better understand evacuation behavior and to 

facilitate improved behavioral assumptions for use in evacuating modeling and shelter 

planning. The behavior assumptions collected as part of this survey were: evacuation rate, 

out-of-county trips, type of refuge, percent of available vehicles, and evacuation timing. 

Surveys were conducted on 400 residents in each of Florida’s 67 counties.  

The results of the SRESP surveys were analyzed to estimate the auto-based evacuation in 

response to a Category 1 and Category 3 hurricane landfall in Broward and Miami-Dade 

county FL. The 2017 census data [63] was used to estimate the number of site-built and 

mobile homes in both regions. Then the SRESP survey results were used to estimate the 

evacuation participation rate, percent of vehicles used, and the number of available vehicles. 

Through the process outlined in SRESP, the “maximum probable” number of evacuating 

vehicles was estimated for the hypothetical storms [54]. This analysis suggest that 173,914 

vehicles would likely be used in the evacuation of Miami Dade County in the event of a 

Category 1 hurricane landfall in the region. A total of 342,379 evacuating vehicles were 

estimated from the area in the event of a Category 3 storm.     

Result and Discussions 

 The results linking traffic volume and fuel shortage for various population centers in 

Florida are presented first. The hourly counts of vehicles obtained from FDOT’s SunGuide 

program are analyzed to obtain cumulative outgoing traffic count over the days impacted by 

Hurricane Irma. Irma made two landfalls, the first in Cujoe Key and the second on to US 

mainland at Marco Island near Naples on Sep 10 at 3:35 PM [64]. The second landfall is 

referenced in Figures 1(a)-1(d). The cumulative egress from Napes-Fort Myers metropolitan 
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area is shown as the dotted line in Figure 1.  The evacuation out of this area started three to 

four days before the hurricane landfall and reached peak by Sep 9. The flat peak around the 

hurricane landfall period indicates the reduced traffic volume during the hours impacted by 

the hurricane.  The solid line in Figure 2(b) shows the fuel shortage reported by Gasbuddy 

crowdsource platform in the form of percent refueling stations without fuel. The peak for the 

fuel shortage lags the peak evacuation traffic as can be expected. When faced with a threat of 

looming hurricane, people usually fill-up their vehicles in preparation for a potential 

evacuation, even if they eventually decide not to evacuate. As can be observed form Figure 

1(b) up to 60 percent of the refueling stations in Naples- Fort Myers area were without gas as 

the evacuation traffic was peaking.  

Figure 1(b) shows a similar plot for Tampa-St Petersburg metropolitan area. The plot 

shows similar trend as that of Naples, with respect to flat traffic peak around landfall and the 

period impacting this region. Fuel shortages of up to 60 percent can be observed lagging the 

peak of evacuation traffic for this region as well. Figure 1(c) shows similar data for Miami-

Fort Lauderdale Metropolitan area. This is the largest metropolitan area in Florida with 

significantly higher population. While the trend is similar to that observed in Figures 1(a) and 

1(b), there are fluctuations in both traffic peak and fuel peak. This can be attributed to the 

early uncertainty in the hurricane path. While the hurricane eventually made landfall close to 

Naples, early predictions indicated a possible landfall near Miami (NHC, 2017). This may 

have prompted early increase in evacuations which stabilized as the hurricane path was more 

certain. Figure 1(d) shows the similar plot for Jacksonville.     
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(c)  

 

(d)  

Figure 2.1 (a) Fuel shortage and cumulative egress for Naples, FL. (b) Fuel shortage 

and cumulative egress for Tampa, FL. (c) Fuel shortage and cumulative egress for 

Miami/Ft Lauderdale, FL. (d) Fuel shortage and cumulative egress for Jacksonville, FL 
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The data in the above figures 1(a) to 1(d) are used to obtain a correlation function 

between the evacuation traffic volume and fuel shortage. This correlation for Miami-Ft 

Lauderdale area is shown in Figure 2. Since there is a delay in the peaks of both fuel demand 

and cumulative egress the plot for fuel demand is shifted to match the peak value around the 

same time as the cumulative egress for all the city/area. This is done as it is hypothesized that 

there is a direct correlation between the occurrence of these peak values without taking the 

uncertainties of evacuation considered. Table 1 shows the time delay (ΔT), in days, that was 

observed for different city/areas in fuel demand and cumulative egress.  

Table 2.1. Time Delay between peak fuel demand and peak cumulative egress for 

different cities. 

City/Area ΔT (Days) IMAX 
Cum. 

EgressMAX 

No. of Fuel 

Stations 

Ft Myers-Naples 3.25 0.61 123356 76 

Tampa-St Petersburg 1.25 0.6 114312 922 

Miami-Ft Lauderdale 1 0.66 234924 1545 

West Palm Beach 0 0.56 36968 34 

Jacksonville 0 0.56 185861 453 
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Figure 2.2 Relationship between fuel demand and cumulative egress for Miami-Ft 

Lauderdale. 

Predictive Modelling and Optimal Control 

Consider a hurricane that would make a direct impact on South Florida. In this 

section, the results of a predictive model for fuel shortages due to evacuation from such a 

hurricane are analyzed and an optimal intervention strategy is developed for such fuel 

shortages. The total traffic volume evacuating out of Miami-Dade County is estimated based 

on Statewide Regional Evacuation Study Program (SRESP) surveys [54]. The survey results 

on the likelihood of evacuation for residents in different surge protection zones are scaled to 

the population of metropolitan area and average vehicle availability for the households from 

US census to estimate the total evacuation numbers. Table 2 below provides the details of the 

calculation for a category 3 hurricane that would make landfall in Miami-Dade County. A 

similar estimate for Category 1 hurricane generates 173,914 vehicles evacuating Miami 

metropolitan area.  
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The total evacuation traffic is distributed across the evacuation period based on the 

traffic distribution during Hurricane Irma. A normalized aggregate traffic distribution, which 

is essentially a combination of the traffic data from Figures 1(a) to 1(d), is used for this 

purpose. The resulting fuel shortage due to the traffic volume is estimated using the 

regression coefficients in Table for Miami region. Figure 3 shows the estimate of fuel 

shortage. Both the prediction of the loading pattern and the fuel shortage prediction can 

improve significantly as data from additional historical and future hurricanes are used to 

develop the relation between evacuation and fuel shortage.  

 

Table 2.2. Calculation of total evacuating vehicles for Miami-Dade County for a 

Category-3 hurricane. The sources for data are [54] and [63]. 

EVAC 

ZONE 

HOUSE EVAC RATE VEH USE RATE  VEH/HH  

 

EVAC VEH 

BUILT MOBILE BUILT MOBILE BUILT MOBILE BUILT MOBIL 

Cat 1 56,046 871 65% 85% 80% 85% 1.5 43,716 944 

Cat 2 80,323 1144 60% 80% 70% 75% 1.9 64,098 1,305 

Cat 3 94,206 2346 60% 80% 70% 75% 1.9 75,177 2,675 

Cat 4 175,122 1704 30% 75% 65% 70% 2.1 71,713 1,879 

Cat 5 188,004 3084 15% 75% 65% 70% 2.1 38,494 3,401 

Inland 422,067 7,039 5% 65% 75% 80% 2 31,656 7,321 

Total Vehicles = 342,379 
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Figure 2.3 Prediction of cumulative egress and fuel shortage for: (a) Category 3 

hurricane directly impacting Miami FL, and (b) Category 1 hurricane directly 

impacting Miami FL. 

Once the predictive model is used to parameterize the fuel shortage data, the optimal 

refueling strategy approach is used for further analysis.  An Unscented Kalman Filter (UKF) 

algorithm [34, 35] is used to estimate the transmission rate per capita (β) and the recovery 

rate (γ) of the predicted fuel shortage. The optimal refueling strategy is then used to 

determine the best scenario for mitigating the fuel shortage problem under a resource 

constraint. In Figure 3, equations 1 and 2 to are utilized to deterministically produce the time-

invariant data of the SIR dynamics without intervention, i.e. using uv=0. The epidemiological 

parameters corresponding to the transmission per capita rate and the recovery rate for the 

predicted category 3 and category 1 hurricanes are shown in Table 2. The use of UKF for 

parameter estimation is necessary as the evolution of infected gas stations (I(t)) from the 
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prediction model was time-variant, but the optimal refueling strategy developed in the 

methods section is based on a time-invariant, continuous-time non-linear dynamic system.  

Figure 5(a) and 5(b) show the change in percentage of empty fuel stations or I (t) as 

the optimal refueling strategy is applied. With uv=0 (i.e. no intervention), for a category 3 

hurricane making a direct hit on Miami, the model predicts that the fuel shortages will be 

more than 80 percent. If the resources are used to provide relief to 75 percent of the gas 

stations at any given time (i.e. uv=0.75), the fuel shortages would be reduced to 29 percent.  

Figure 6(a) shows that the optimal switching time for the bang-bang controller with uv=0.75 

is 3 days. This implies that the infectious behaviour of fuel shortage can be mitigated by 

providing relief to 75 percent of operating refueling stations for the first 3 days after the start 

of evacuation. This essentially means that the R0 parameter described earlier is less than 1 

under these conditions, i.e. 1 percent gas stations going out of fuel does not cascade into fuel 

shortage beyond this 1 percent. When R0 is higher than 1, like with (uv=0), 1 percent gas 

stations going out of fuel leads to an additional R0 percent refueling stations going out of fuel 

due to the infectious behaviour.  Figure 5 and 6 show how the switching function (ts) and the 

level of intervention (uv) can be varied to optimally control the problem and mitigate the 

infectious behaviour.  

TABLE 2.3 Results of parameter estimation using the UKF for the fuel shortage 

prediction 

Parameter Category 1 Category 3 

Transmission rate per capita (β) 0.0028/day 0.0043/day 

Recovery rate (γ) 0.0453/day 0.0105/day 
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(a)                                                                         (b) 

Figure 2.4 Fuel shortage prediction model and the Time-invariant continuous SIR data 

computed using UKF parameter estimation for (a) category 3 hurricane and (b) 

category 1 hurricane. 

 

 

(a)                                                                          (b) 

Figure 2.5 Change in the percentage of empty fuel stations due to varying levels of 

intervention (uv,max) for (a) Category 3 hurricane and (b) Category 1 hurricane 
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                                      (a)       (b) 

Figure 2.6. Switching time of optimal refueling strategy for (a) category 3 and (b) 

category 1 hurricanes. 

The initial data gathered during early stages of a hurricane evacuation can also be 

used as the measurement update of the UKF to evaluate the β parameter of the SIR dynamics 

model for fuel shortage. The γ parameter is related to recovery rate and can be estimated 

using the β estimate and an approximate recovery period based on historical data or by 

varying the R0. This analysis for all the affected regions combined with the optimal refueling 

methodology discussed above can help assess the levels of fuel supply required to mitigate 

the fuel shortage crisis in the affected regions, and thereby assist decision makers in 

allocating limited resources in a dynamically evolving emergency.  

Figure 7 shows the predictive model for such case for Fort Myers-Naples area during 

Hurricane Irma. The R0 is valued to determine the recovery rate (γ) to produce the 

mechanistic data for the predictive model. For this analysis, it is assumed that Day 1 fuel 

shortage data for Fort Myers-Naples area is available and the parameter estimation applied to 
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it to determine the possible scenarios. The best fit R0 is the one that was determined as 

described is the methods section.  

Figure 8 to 11 show the optimal refueling strategy for different R0s corresponding to figure 7 

for Naples-Fort Myers. Figure 8 (a) shows the evolution of susceptible gas stations with 

different levels of intervention for R0=5. Similarly, figure 8(b) and (c) show the 

corresponding infected (or empty) gas stations and the switching time for various levels of 

intervention. Figures 9, 10 and 11 are similar plots for other values of R0. This approach can 

be applied during the early stages of an ongoing hurricane to establish upper and lower 

bounds for the possible levels of fuel shortage and to estimate the effect of various levels of 

intervention. The on-the-fly prediction will improve as more data becomes available.   

CONCLUSIONS 

In this paper, a predictive model formulation for the evolution of fuel shortages 

during hurricanes and an optimal control strategy to mitigate such shortages is presented.  As 

fueling stations are depleted, their latent demand spreads to neighboring stations and 

throughout the community, similar to an epidemiological outbreak. This realization allows 

the application of well-established epidemiological research and models to be applied to fuel 

shortages and mitigation strategies. In addition, an epidemiological analogue for resource 

allocation based on vaccination models and optimal control theory is developed to address 

fuel shortages. 

The data analysis of the evacuation traffic and crowd sourced fuel shortage data 

suggests that there is a direct correlation between the two. The analysis suggests the 

evacuation from Hurricane Irma and related activities depleted over 60 percent of the fuelling 
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stations in Tampa, Miami/Fort Lauderdale, and Naples, while Jacksonville saw depletion 

rates as high as 56 percent. Using epidemiological analogy, the fuel shortage epidemic is 

controlled when the basic reproduction number (R0) is less than 1. The predictive model 

suggests that there can be a fuel shortage in up to 90 percent of the refueling stations in 

Miami-Dade County, due to an evacuation from a Category 3 hurricane impacting Miami. 

The optimal control algorithm suggests the level and duration of intervention required to 

keep these fuel shortages from becoming an epidemic. While the application focused on 

hurricanes impacting Florida, the model is generally applicable to similar resource shortages 

due to evacuations in any location. The model can also be utilized to predict the level of fuel 

shortage and the effect of intervention, by using limited data available during the early stages 

of a hurricane evacuation. This approach is demonstrated using early data from Hurricane 

Irma for Naples-Fort Myers region. 

 

Figure 2.7. Predictive model for Fort Myers-Naples area from β parameter estimation 

and varied R0 of 7, 3.5 and 2.9 respectively.  
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(a)     (b) 

 

(c) 

Figure 2.8. Evolution of (a) susceptible (operational), (b) infected (empty) gas stations, 

(c) The optimal application and switching time, ts, for different refueling rates and the 

effect of refueling for Fort-Myers-Naples during Hurricane Irma for the predictive 

model with R0=5. 
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(a) 

 

 

 

   (b) 

 

(c) 

Figure 2.9. Evolution of (a) susceptible (operational), (b) infected (empty) gas stations, 

(c) The optimal application and switching time, ts, for different refueling rates and the 

effect of refueling for Fort-Myers-Naples during Hurricane Irma for the predictive 

model with R0=7.  
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(a)

 

 

 

 

   (b) 

 

(c) 

Figure 2.10. Evolution of (a) susceptible (operational), (b) infected (empty) gas stations, 

(c) The optimal application and switching time, ts, for different refueling rates and the 

effect of refueling for Fort-Myers-Naples during Hurricane Irma for the predictive 

model with R0=3.5.  
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(a)  

      (b) 

 

(c) 

Figure 2.11. Evolution of susceptible (operational) gas stations and the effect of 

refueling for Fort-Myers-Naples during Hurricane Irma for the predictive model with 

R0=2.9. 
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