

Agronomic Services Division

➤ Soil Testing Lab

- > David Hardy, Ph.D., Section Chief
- ➤ Jagathi Kamalakanthan, Agronomist

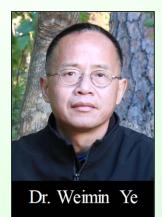
➤ Plant, Waste, Solution & Media Analysis Lab

- > Kristin Hicks, Ph.D., Section Chief
- > Jessica Long, Agronomist

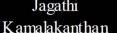
➤ Nematode Assay Lab

➤ Weimin Ye, Ph.D., Section Chief

Field Services


- ➤ Michelle McGinnis, Ph.D., Section Chief
- ➤ 13 regional agronomists

Dr. David Hardy



Dr. Kristin Hicks

Jessica Long

Dr. Michelle McGinnis and 13 Regional Agronomists

Purpose of this presentation

Tell you about the work we're doing to

- Obtain scientifically valid information
- To be incorporated into our lab's interpretations and recommendations
- So we can provide scientifically and economically and environmentally sound nutrient advice.

NCDA Agronomic Services, NCSU Crop & Soil Science, NCSU Horticultural Science

Soil Test Recommendations for Hemp

Based on University of Kentucky guidelines for seed and fiber hemp

Target pH

- 6.2 for mineral soil
- 5.5 for mineral-organic soil
- 5.0 for organic soil

Nitrogen rate

- 50 lb/A for fiber
- 100-150 lb/A for seed/grain
- No recommendation for flower* (100-150 lb/A typical grower rate)

Phosphorus and potassium rates

(based on soil test results)

- Phosphorus (P₂O₅)
 - 0 lb/A at P-Index of 70
 - 150 lb/A at P-Index of 0
- Potassium (K₂O)
 - 0 lb/A at K-Index of 80
 - 150 lb/A at K-Index of 0

*NCDA/NCSU research underway to determine optimal N and K rates for floral hemp

Plant Tissue Analysis

Tool to manage in-season fertility and help identify cause(s) of plant growth problems

Collecting representative plant leaf tissue samples

- Collect the most recently mature leaf (MRML)
- Generally the 3rd to 5th leaf down from the growing point
- Collect 1-2 MRMLs from 20-30 from similar environments (30-40 leaves per sample
- Send to lab; lab measures essential plant nutrients

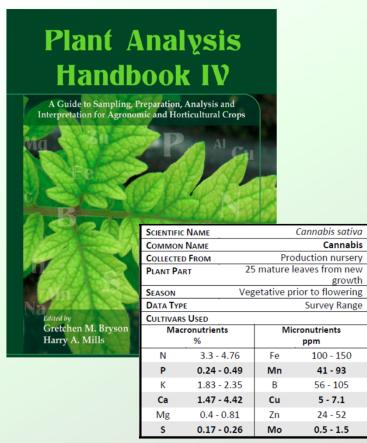
Plant Tissue Analysis

- Compare results to crop specific nutrient ranges
 - <u>Sufficiency ranges</u> Established through yield based studies a wide range of growing environments (not established for hemp)
 - <u>Survey ranges</u> Based on observational data under fewer growing environments; good approximation of deficient and toxic critical levels; additional info needed (published general guidelines)
- Lab reports indicate if nutrients are sufficient, deficient, or high

Compare lab results to crop specific nutrient ranges

Sufficiency Ranges

- Established through yield based studies a wide range of growing environments
- Not established for hemp


Survey Ranges

- Based on observational data rather than research
- Published guidelines (Bryson & Mills)*
- Good framework of nutrient status

Lab reports

• Indicate if nutrients are sufficient, low, or high

*Bryson, G.M, and H.A. Mills (Eds). 2014. *Plant analysis handbook IV e-edition. A guide to sampling, preparation, analysis, and interpretation for agronomic and horticultural crops*. Athens, GA: Macro-Micro Publishing Inc.

NCDA Plant Analysis Report

Crop with established sufficiency ranges

								•				•	U
Sample Information		Nu	utrient M	easureme	nts are giv	en in units o	of parts per	million (ppm	or mg/L) u	nless other	wise specifie	d.	
ID: WHEAT	N (%)	P (%)	K (%)	Ca (%)	Mg (%)	S (%)	Fe	Mn	Zn	Cu	В	Mo	NO ₃ -N
Crop: Wheat	5.57	0.48	3.07	0.17	0.04	0.55	93.7	83.6	26.0	5.81	2.96	-	-
Growth Stage: E					Interpr	etation In	dexes			77 A#2 - 5			
Week: 16	N 89-H	P 73-S	K 56-S	(Ca 38-L	Mg 12-D	S 69-S	Fe 59-S	Mn 62-S	Zn 54-S	Cu 53-S	B 51-S	Mo	
Plant Part: W	Other Results					Nutrient Ratios							
Plant Position: ∪	Na (%)	CI (%)	C (%)	DW (g)	AI	N:S	N:K	Fe:Mn					
Plant Appearance:	0.01	-	-	-	86.9	10.1 : 1	1.81 : 1	1.12 : 1	1				

Plant indexes based on crop specific sufficiency ranges

- 50-75 Nutrients within sufficiency range
- <50 Nutrients low or deficient
- •>75 Nutrients high

Crop w/o established sufficiency ranges

Sample Information		N	utrient Me	easureme	nts are giv	en in units	of parts per	million (ppm	or mg/L) u	nless other	wise specifie	ed.	
ID- BAT	N (%) 5.45	P (%) 0.29	K (%) 2.06	Ca (%) 1.93	Mg (%) 0.29	S (%) 0.28	Fe 118	Mn 154	Zn 41.1	Cu 17.3	B 53.9	Мо	NO3-N
Crop: Hemp, Field Growth Stage: M			A (100 Page 1)	9193,350	S 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	etation Ir	20,399	0.703					
Week: 0	N -	P -	K -	Ca -	Mg -	S -	Fe -	Mn -	Zn -	Cu -	B -	Mo -	
Plant Part: M	Other Results					Nutrient Ratios							
Plant Position: 0	Na (%) 0.00	CI (%)	C (%)	DW (g) 0.62	Al 22.4	N:S 19.4 : 1	N:K 2.65 : 1	Fe:Mn 0.77 : 1					

- No indexes for hemp b/c no sufficiency ranges or NC based survey ranges
- Compare results to Bryson
 & Mills survey ranges listed in Agronomist's Comments

Agronomist's Comments: Plant sufficiency ranges for hemp have not yet been established. The following are survey ranges for Cannabis in production nurseries at the vegetative stage prior to flowering reported in the Plant Analysis Handbook: N (3.3-4.76%); P (0.24-0.49%); K (1.83-2.35%); Ca (1.47-4.42%); Mg (0.4-0.81%); S (0.17-0.26%); Fe (100-150 ppm); Mn (41-93 ppm); B (56-105 ppm); Cu (5-7.1 ppm); Zn (24-52 ppm); Mo (0.5-.1.5 ppm). Kristin A. Hicks 7/30/2019 9:29 AM

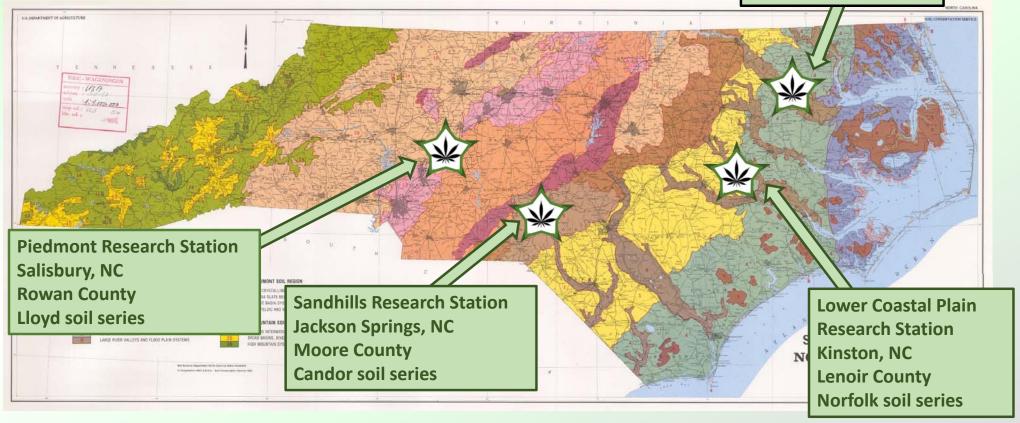
NCDA and NCSU – Two Projects

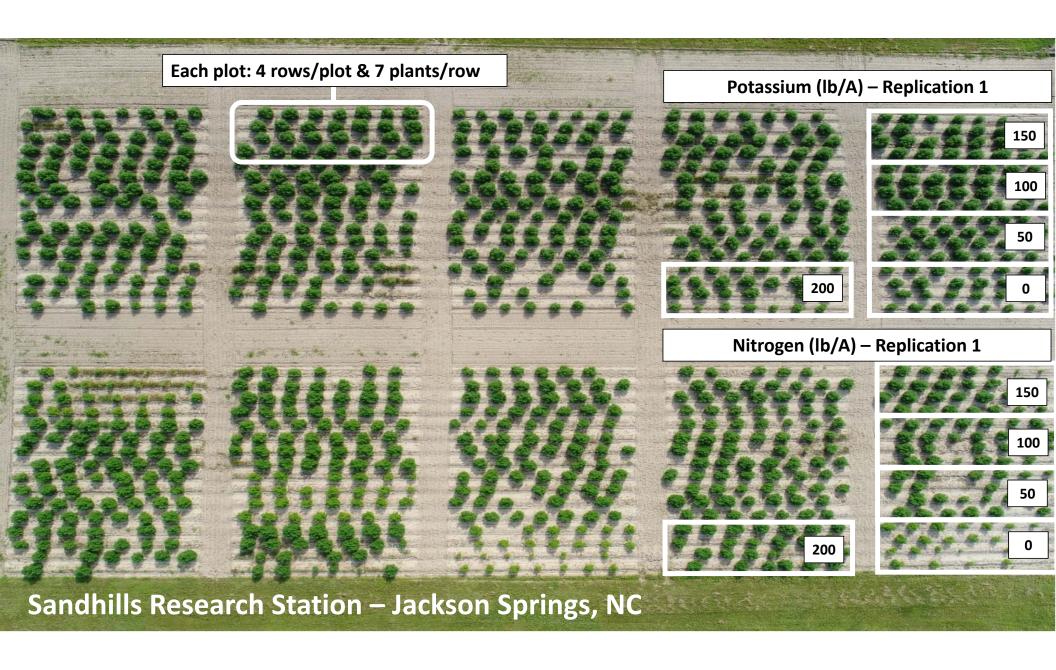
- Floral hemp nitrogen and potassium rate study
- Floral hemp foliar nutrient survey

Nitrogen and Potassium Rates for Floral Hemp Experimental Design

Nitrogen Rate Studies

- 0, 50, 100, 150, 200 lb N/A
- RCBD with 4 reps
- Nitrogen: Split-applied with 28% UAN
 - 50% ~10 days after transplanting
 - 50% ~28 days after transplanting


Potassium Rate Studies


- 0, 50, 100, 150, 200 lb K₂O/A
- RCBD with 4 reps
- Potassium: Applied with K₂SO₄ (0-0-50, 17%S) ~10 days after transplant
- Fields had NCDA soil test K-I <40

N and K Rates for Floral Hemp Experimental Design

On-Farm
Windsor, NC
Bertie County
Wickham soil series &
Dogue soil series

N and K Rates for Floral Hemp Materials & Methods (Planting)

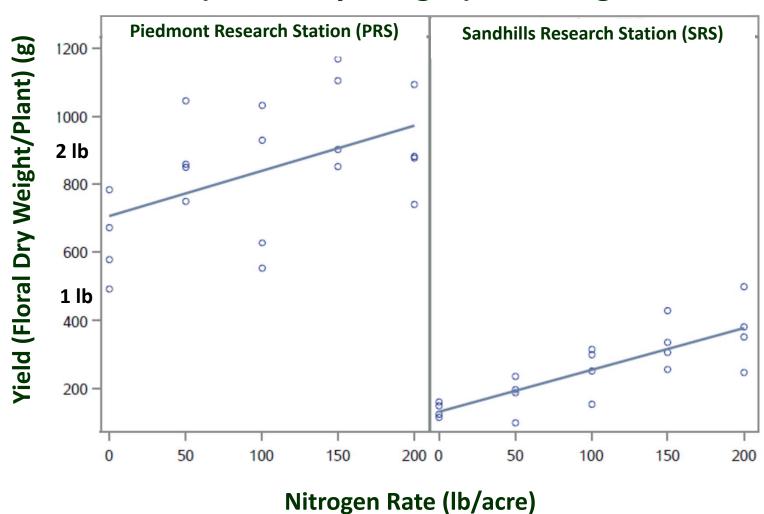
- BaOx clones transplanted
 - Mid-May at research stations
 - Late-June at farm locations
- Mechanical transplanting
- Open beds
- 60" in-row spacing
- Variable between row spacing

N and K Rates for Floral Hemp Materials & Methods (Data Collection)

- Foliar tissue samples (nutrients)
 - Every other week from Week 4-16
- Growth index measures
 - Every other week from Week 4-16
- Floral tissue samples (cannabinoids)
 - Clear, milk, amber trichome stage (100 lb treatments)
 - Harvest (all treatments)
- Soil samples
 - Pre-plant, Week 8, Harvest

N and K Rates for Floral Hemp Materials & Methods (Harvesting)

- Three plants per plot
- Tobacco barn at 150°F for 2-3 days (in bags)
- Floral tissue removed from stems
- Placed in dryer until constant weight
- Weighed dry floral material (yield)



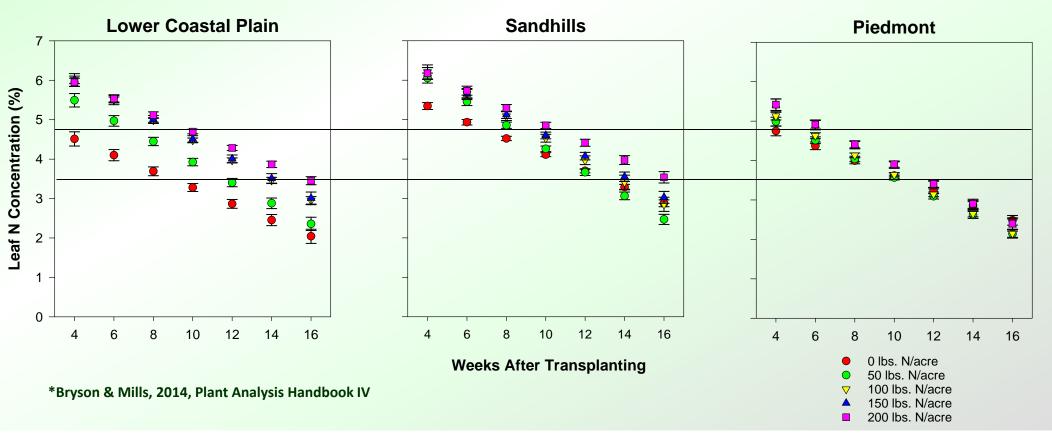
Yield (Floral Dry Weight) vs Nitrogen Rate

Nitrogen Test at Harvest (Sandhills)

0 lbs N/acre

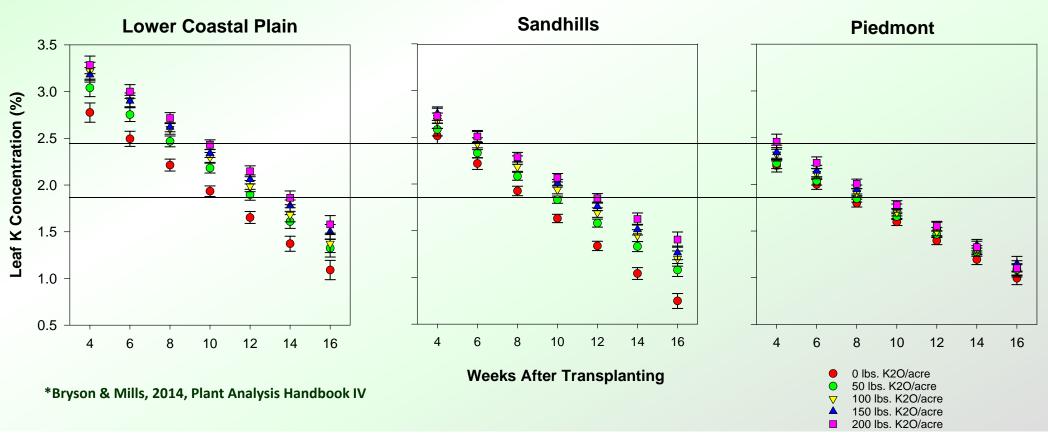
100 lbs N/acre

200 lbs N/acre


N and K Rates for Floral Hemp Results

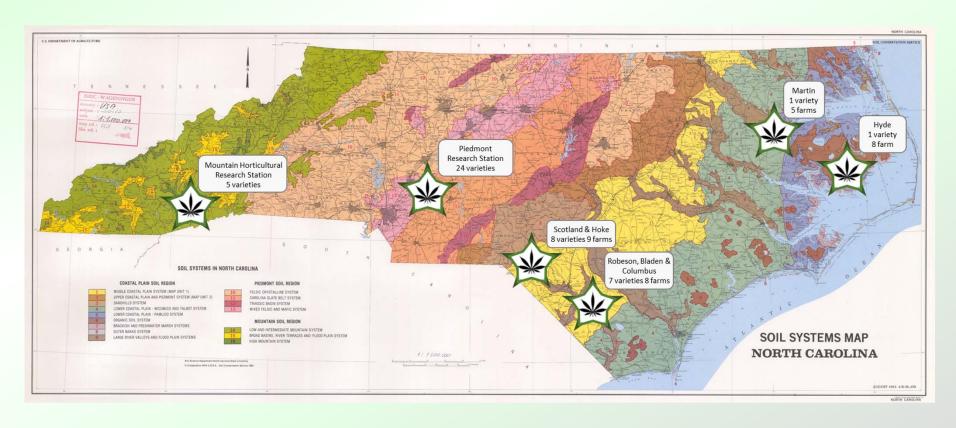
- Linear yield response to increasing N rate
 - Sandhills and Piedmont
- Quadratic yield response to increasing N rate
 - Lower Coastal Plain
- No yield response to N rate
 - Bertie Farm
- No yield response to K rate
 - All locations

Foliar N Concentration (N Rate Study)


Nitrogen survey range 3.3-4.8%*

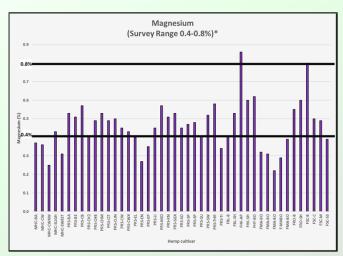
Foliar K Concentration (K Rate Study)

Potassium survey range 1.8-2.4%



- Ground-truth Bryson & Mills nutrient survey ranges to cultivars and environments specific to North Carolina
- 2019 and 2020
- Multiple cultivars (NCSU trials)
- Transplant sources (producer and clones/seeds)
- Fertility management / irrigation management
- Across the state

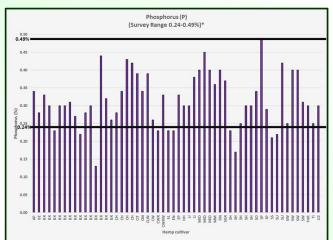
Leaf Tissue Nutrient Survey Sample Locations

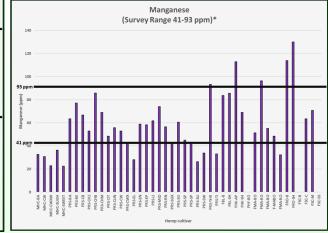

Calcium survey range 1.5-4.4%

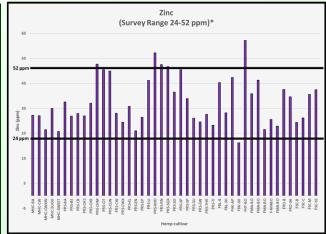
Calcium (Ca) (Survey Range 1.5-4.2%)* 4.26 4.26 1.56 1.56 1.56 1.60 1.6

Boron survey range 56-105 ppm

Magnesium survey range 0.4-0.8%

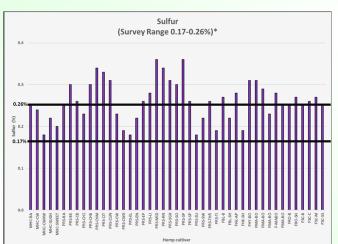

Ranges too high??

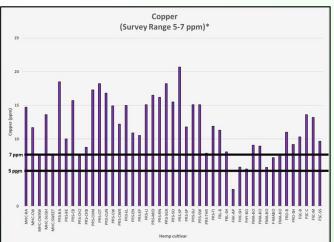


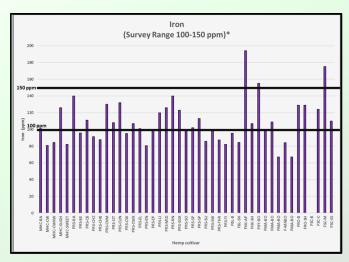

Phosphorus survey range 0.24-0.49%

Manganese survey range 41-93 ppm

Zinc survey range 24-52 ppm




Ranges reasonable??


Sulfur survey range 0.17-0.26%

Copper survey range 5-7 ppm

Iron survey range 100-150 ppm

Ranges too narrow??

Super Team

- Maggie Short MS Student
- Matthew Vann
- Keith Edmisten
- NCSU Tobacco Team
- Agronomic Field Services Team
- Research Stations
- Extension Agents

Thank you for funding and support!

RYES GREENHOUSES, LLC

