

Ali Tariq Bhatti

Dept.: Electrical & Computer Engineering
Title: "Advanced Vector Quantization
Techniques for Image Compression in the
Spatial and Frequency Domain"
Major Professor: Dr. Jung H. Kim

PSNR	comparison	hetween	all	techniques	for 1	Rridae imaa	0

Bridge Image 256x256	16x50	64x50	
Spatial domain using VQ	29.029	25.48	
50% Zig-Zag scanning	26.1973	25.0741	
Simplified JPEG	29.388	26.114	
DCT domain using VQ	30.853	27.644	
MCVQ Dual	34.291	31.669	
MCVQ Quadruple	32.950	29.788	

RESEARCH QUESTIONS / PROBLEMS:

- The absolute volume of data and its growth in the future are considered as the most important and key challenges in Big Data Technology.
- High quality image requires larger bandwidth and raw images need larger memory space.
- In order to resolve this problem, Advanced Vector Quantization (VQ) using Unsupervised K-Mean algorithms was the main compression optimization technique used in this research.

METHODS:

- Various blocks for a codebook size of 25 and 50 were used.
- Advanced VQ techniques such as hybrid lossy/lossless approach to use VQ followed by Huffman coding to achieve higher PSNR number and less execution time in both spatial and DCT domain.

<u>RESULTS / FINDINGS:</u>

• To maintain good-quality reconstructed image with higher PSNR and higher SNR for a given acceptable Compression Ratio, and less execution time.

SIGNIFICANCE / IMPLICATIONS:

• This research has a significant role on saving image storage space and saving time while sending images over the network without excessively reducing the quality of the image.