John P. Ward

TitleAssistant Professor

DepartmentMathematics

Phone336-285-2080

Fax336-256-0876

Emailjpward@ncat.edu

OfficeHines Hall
Room: 323

1601 East Market Street
Greensboro, NC 27411

John P. Ward

Education

Ph D: Mathematics, Texas A&M University, 2010

BS: Mathematics, University of Georgia, 2005


Research Interests

Applied harmonic analysis, Signal and image processing, Wavelets, Basis functions, Measure theory, Stochastic processes, Signal processing on graphs


Recent Publications

Nguyen, Ha  Unser, Michael  Ward, John  (2017).  Generalized Poisson Summation Formulas for Continuous Functions of Polynomial Growth.  (2,  23,  pp. 442-461).  Journal of Fourier Analysis and Applications.

Fageot, Julien  Unser, Michael  Ward, John  (2017).  On the Besov regularity of periodic L\'evy noises.  (1,  42,  pp. 21-36).  Appl. Comput. Harmon. A..

Unser, Michael  Fageot, Julien  Ward, John  (2017).  Splines are Universal Solutions of Linear Inverse Problems with Generalized-TV regularization.   SIAM Review.

Depeursinge, Adrien  Puspoki, Zsuzsanna  Ward, John  Unser, Michael  (2017).  Steerable Wavelet Machines (SWM): Learning Moving Frames for Texture.  (4,  26,  pp. 1626-1636).  IEEE Transactions on Image Processing.

P\"usp\"oki, Zsuzsanna  Ward, John  Sage, Daniel  Unser, Michael  (2016).  On the continuous steering of the scale of tight wavelet frames.  (3,  9,  pp. 1042-1062).  SIAM J. Imaging Sci..

Bostan, Emrah  Unser, Michael  Ward, John  (2015).  Divergence-Free Wavelet Frames.  (8,  22,  pp. 1142-1146).  IEEE Signal Proc. Let..

Ward, John  Lee, Minji  Ye, Jong  Unser, Michael  (2015).  Interior Tomography Using 1D Generalized Total Variation. Part I: Mathematical Foundation.  (1,  8,  pp. 226-247).  SIAM J. Imaging Sci..

Lee, Minji  Han, Yoseob  Ward, John  Unser, Michael  Ye, Jong  (2015).  Interior tomography using 1D generalized total variation. Part II: Multiscale implementation.  (4,  8,  pp. 2452-2486).  SIAM J. Imaging Sci..

Ward, John  Pedram, Pad  Unser, Michael  (2015).  Optimal Isotropic Wavelets for Localized Tight Frame Representations.  (11,  22,  pp. 1918-1921).  IEEE Signal Proc. Let..